J. Phytol. Res. 17(1): 13-16, 2004

MULTIVARIATE ANALYSIS IN SESAME (SESAMUM INDICUM L.) FOR SELECTION OF BETTER PARENTS

SONALI SENGUPTA, MOUMITA MUKHERJEE, ANIMESH K. DATTA and DEBASHIS MAJUMDAR* Department of Botany, Genetics and Plant Breeding Section, Kalyani University, Kalyani - 741235, India. *Department of Agro-statistics, B.C.K.V., Mohonpur, India.

Yield and 8 yield related components have been assessed in 22 plant types (control and 21 macromutant lines) of sesame (*Sesamum indicum* L.) for selection of better parents aiding to crop improvement following multivariate analysis. Results indicated that *cluster flower*, *broad leaf* and *diffused branching* mutants are promising parents and are distant from other plant types.

Keywords : Sesame; Macromutants; Multivariate analysis; Promising parents.

Introduction

Twentyone macromutant types have been evolved through induced chemical mutagenesis in sesame^{1,2} (*Sesamum* indicum L.), important oilseed crop of the family Pedaliaceae, and were catagorized following qualitative and quantitative traits^{3,4}. Important selection criteria have been identified in the plant types through genetic studies⁵. This investigation reports on the selection of better parent(s) among the plant types of sesame (control and 21 macromutants) following the use of multivariate analysis (discriminate function analysis, principal component analysis and cluster analysis) taking into consideration yield and 8 important yield related components.

Material and Methods

Genetic analysis was made on 9 quantitative characters (plant height, primary and total branches / plant, distance from base to first branching, capsules on the main axis, capsules/ plant, capsule length, seeds/ capsule and seed yield) from 22 plant types (1.Control - C, 2.Viridis - V, 3.Broad leaf - BL, 4.Thick leaf - TL, 5.Narrow leaf - NL, 6.Dwarf - D, 7.Diffused branching - DB, 8.Funnel - F, 9. Cluster flower - CF, 10. Early flowering - EF, 11. Late flowering - LF, 12.Small flower - SF, 13.White flower -WF, 14. Globular fruit - GF, 15. Non-shattering capsule -NS, 16. Elongated fruit - Efr, 17. Reddish brown seed-coat I - RB1, 18. Reddish brown seed-coat II - RB2, 19.Dark reddish brown seed-coat I - DRB1, 20. Dark reddish brown seed-coat II - DRB2, 21.Bold seeded - BS and 22.Large seeded - LS; selfed control and true breeding M₄ and M₅ mutant lines were used) of sesame (Sesamum indicum L.var. B-67) following the use of index of the net merit of an individual constructed by taking together the scores of each characters as was proposed by Jain⁶. Based on correlation matrix, principal component analysis (PCA) as described by Dillon and Goldstein⁷ has been performed to judge the factor score of each plant type due to two highest eigen values. Percentage variation explained by first eigen values was also calculated. Further, Hierarchical cluster using the single linkage and complete linkage

methods⁷ based on Euclidean distance matrix of Z transformed character scores of different plant types have been performed to group the plant types into homogenous sub-units. Respective dendrograms have been drawn based on agglomeration schedule.

Results and Discussion

Total branches / plant, capsules / plant, capsule length and seeds / capsule (Model I), and capsules / plant, capsule length and seeds / capsule (Model II) estimated as important selection criteria from correlation and path analysis and from stepwise regression analysis respectively⁵ were given economic non zero weights (ai values) and the remaining all variables were zero values for selection index (Table 1). The calculated bi values as per Jain⁶ has been displayed in Table 1 and the corresponding index scores for each plant type was analysed using mean data. Based on selection index (5% selection intensity) the plant types have been ranked and in both models ranking seems to be more or less same (Table 2), thereby offering scope for selection of better parents.

PCA based on mean values gave two sets of factor loadings (pc1 and pc2) corresponding to first two large eigen values (> 1) and explaining 78.06 % of total "accounted for variance" of the whole experiments (Table 3). The variables loading on component 1 (Table 4) indicated that except for distance from base to first branching all other variables are heavily loaded and comparing the factor score coefficients it seems that mutant CF followed by BL and DB are scoring maximum (Table 5). The component 1 explains about 64% of total variance. In component 2 it has been observed that distance from base to first branching, primary and total branches / plant and plant height were dominating (Table 4) and the mutants LF, CF and RB1 were having maximum factor scores and this component accounted for another 15% of total variance (Table 5). Although the factor scores due to component 1 and 2 are uncorrelated, CF, BL and DB are promising parents in both and this result of PCA validated

Character	Moc	lel I	Model II		
	ai value	bi value	ai value	bi value	
Plant height	0	- 0.077	0	- 0.076	
Primary branches/ plant	0	- 16.679	0	- 14.850	
Total branches	1	10.168	0	8.656	
Distance from base to first branching	0	0.148	0	0.130	
Capsules on main axis	0	- 0.042	0	- 0.022	
Capsules/ plant	1	0.836	1	0.803	
Capsule length	1	28.590	1	28.065	
Seeds / capsule	1	0.709	1	0.713	
Seed weight	0	0.089	0	- 0.089	

Table 1. Quantitative characters of Sesame and ai and bi values in Model I and Model II.

Table 2. Sesame plant types and their ranked scores due to selection index of different characters.

Plant types	Plant no.	Score		
		Model I	Model II	
Viridis	2	57.793	128.673	
Dwarf	6	71.031	157.987	
Reddish brown seed-coat I	17	71.896	159.332	
Dark reddish brown seed-coat II	20	81.998	182.530	
Reddish brown seed-coat II	18	83.629	186.575	
Dark reddish brown seed-coat I	19	89.146	199.770	
Bold seeded	21	92.657	207.328	
Non-shattering capsule	15	93.683	209.035	
White flower	13	96.570	216.743	
Large seeded	22	100.270	223.488	
Globular fruit	14	100.803	223.748	
Early flowering	10	102.275	227.608	
Control	1	103.186	230.189	
Late flowering	11	105.624	235.415	
Thick leaf	4	109.896	245.757	
Narrow leaf	5	110.127	247.533	
Small flower	. 12	110.291	246.831	
Funnel	8	113.946	255.863	
Elongated fruit	16	122.201	272.302	
Diffused branching	7	124.488	280.521	
Broad leaf	3	130.866	296.690	
Cluster flower	9	135.516	298.264	

J. Phytol. Res. 17(1): 13-16, 2004

Factor	Eigen value	Percentage of variance	Cumulative variance
1	5.72	63.55	63.55
2	1.31	14.51	78.06
3	0.86	9.57	87.63
4	0.44	4.86	92.49
5	0.30	3.30	95.78
6	0.19	2.14	97.92
7	0.12	1.33	99.25
8	0.05	0.54	99.79
9	0.02	0.21	100.00

Table 3. S. indicum Mean	values and '	' accounted for	variance"	under PCA.
--------------------------	--------------	-----------------	-----------	------------

Table 4. S. indicum- Component loadings of different traits for eigen values more than 1.

Character	2.1	Co	mponent		 -
		1		2	
Plant height	·	0.825		0.240	
Primary branches		0.863		0.306 •	
Total branches	· · · (0.778	2° 4 2	0.404	
Distance from base to first branching		0.313	2	0.802	
Capsules on main axis	(0.831		- 0.340	
Capsules / plant	(0.907		- 0.094	
Capsule length	· (0.802		- 0.323	
Seeds / capsule	a	0.820		- 0.164	
Seed yield	().872	8 m	- 0.305	

Fable 5. S. indicum - Standardized factor score	coefficients of different	plant types due to PCA
--	---------------------------	------------------------

Plant no.	Plant types	pc1	pc2
1	Control	0.258	-0.106
2	Viridis	-2.629	-0.199
3	Broad leaf	1.324	-0.555
4	Thick leaf	0.660	-1.380
5	Narrow leaf	0.540	-1.074
6	Dwarf	-1.485	0.261
7	Diffused branching	1.137	-0 438
8.	Funnel	0.238	-0.957
9	Cluster flower	1.786	2 016
10	Early flowering	0 393	-0 703
11	Late flowering	0.774	2 855
12	Small flower	0 392	-0.460
13	White flower	-0.086	-0.400
14	Globular fruit	-0.345	0.118
15	Non-shattering cansule	-0.345	-0.555
16	Flongated fruit	-0.500	0.201
17	Roddish brown seed-coat I	1.002	-0.896
18	Reddish brown seed coat II	-1.092	1.535
10	Dark raddish brown good oost I	-0.811	0.041
20	Dark realish brown seed-coal I	-0.232	0.263
20	Dark readish brown seed-coat II	-0.819	0.135
21	Bold seeded	-0.524	-0.235
22	Large seeded	-0.076	-0.066

that of discriminant function for selection of better parent. Further, dendrogram (Fig. 1) prepared from cluster analysis revealed that the selected better parents have been distantly related than the remaining plant types.

Acknowledgement

The authors are thankful to CSIR for financial assistance. **References**

- Sengupta S and Datta A K 2002, Types and frequency of macromutants induced by seven chemical mutagens in sesame (Sesamum indicum L.). Journal of Hill Research 15 71 - 77
- Sengupta S and Datta A K 2003, Secondary chromosome associations in control and mutant plant types of Sesamum indicum L. Cytologia 68 141 - 145
- 3. Sengupta S and Datta A K 2004, Desirable macromutant induced by chemical mutagens in

sesame (Sesamum indicum L.). Cytologia 69 (In press)

- Sengupta S and Datta A K 2004, Induced protein rich late flowering and seed coat colour mutants in sesame (Sesamum indicum L.). Cytology and Genetics 5 27 - 31
- 5. Sengupta S 2003, Cytogenetical, genetical and biochemical aspects of induced chemical mutagenesis in sesame (Sesamum indicum L.), Ph.D Thesis Kalyani University
- 6. Jain J P 1982, *Statistical techniques in quantitative genetics*, Tata Mc Graw-Hill Publishing Company Ltd. pp 117 122
- 7. Dillon W R and Goldstein M 1984, *Multivariate* analysis methods and application, John Wiley & Sons (eds.) pp 209 - 242