J. Phytol. Res. 7 (2): 159-160, 1994

STOMATAL RESPONSES TO CHRONIC AIR POLLUTION

ALKA AWASTHI

National Environmental Engineering Research Institute, Nagpur, India.

This paper presents the variation in stomatal density and stomatal dimensions observed at three different sites affected by chronic air pollution.

Keywords : Air pollution; Stomata.

Stomates represent the main route of gas exchange between the plant and the atmosphere. The degree of stomatal opening is under biological control and represents one of the ways by which plants related to environmental change¹. Subsequently, the subject of variation in stomatal frequency/ density and size has been investigated by several workers as reviewed by Ahmad et $al.^2$

Plant material was collected from the compound of Sun Flag Iron & Steel Co.

Ltd. located about 11 km north of Bhandara town (Maharashtra). Monthly data of air pollution levels was available for three sites. Although the pollution levels varied from month to month, the descending order of pollution in three sites was always in the order __maintenance workshop > officer's colony > pump house. Leaves were collected from these three sites between 1200 to 1300 hrs in the month of February, the air pollution monitoring data for the same period is given in Table 1.

S. Parameters	Maintenance	Officer's	Pump house		
No.	workshop	colony			
T THE PLAT OF A PLATE					
1. Temperature			And the second second second		
max (⁰ C)	34	34	34		
$\min (^{0}C)$	16	16	16		
2. Relative humidity		and the second			
max	87	87	87		
min	50	50	50		
3. Wind velocity km/h	8	8	8		
4. SPM (μ g/Nm ³)	217	162	74		
5. SO2 (µg/Nm ³)	27	16	8		
6. Nox ($\mu g/nM^3$)	17	uti neo 11 bornet	at 25 68 7 4		

Table 1. Data on ambient air quality for February.

Awasthi

S. Name of plant No.	Maintenance workshop			Officer's colony		np ise
	SD	EO	SD	EO	SD	EO
1. Melia azedarach	90.8	8.4	50.0	13.4	64.0	11.4
2. Mangifera indica	68.7	6.7	90.3	12.1	57.5	19.2
3. Ficus religiosa	30.0	25.2	26.8	13.4	54.0	18.5
4. Polyalthia longifolia	51.5	13.4	56.5	13.4	47.1	20.6
5. Eucalyptus globulus	34.5	16.8	30.8	14.5	42.2	14.1
6. Leucana leucocephala	32.5	15.1	35.7	15.1	22.5	15.1
7. Acacia auriculiformis	70.5	11.8	58.5	14.5	60.5	14.5
8. Dalbergia sissoo	54.0	13.4	34.2	11.8	48.7	13.8
9. Eugenia cuminii	57.5	16.8	78.8	14.5	70.5	16.8

Table 2. Variation in stomatal density (SD) and effective opening (EO)*

Table 3, Variation in major axis* (MaA) and minor axis (MiA)*

S. No.	Name of plant	Maintenance workshop		Officer's colony		Pump house		
		MaA	MiA	MaA	MiA	MaA	MiA	1
1.	Melia azedarach	20.6	13.4	21.8	18.5	20.8	15.1	
2.	Mangifera indica	16.8	16.8	18.8	16.8	21.8	12.8	
3.	Ficus religiosa	25.2	16.8	25.5	13.4	24.5	12.8	
4.	Polyalthia longifolia	16.8	10.8	17.8	8.7	24.5	15.1	
5.	Eucalyptus globulus	25.2	19.8	24.5	16.8	21.8	13.4	
6.	Leucana leucocephala	21.8	15.1	23.5	15.1	23.8	15.1	
7.	Acacia auriculiformis	20.2	10.1	23.5	14.5	17.8	9.1	
8.	Dalbergia sissoo	18.5	10.1	23.5	13.4	20.5	13.8	
9.	Eugenia cuminii	23.5	15.1	21.2	15.1	23.9	16.8	

There was a heavy deposition of particulate matter on leaves collected from maintenance workshop, but chlorosis and necrosis were not observed in any sample. This indicates that the existing levels of pollution were less than the threshold value for tissue necrosis.

Stomatal dimensions (major axis, minor axis and effective opening) bear no relation to the pollution trends (Table 2,3). Stomatal density also does not appear to be correlated with existing pollution levels.

It can be inferred from the observations that below the threshold (for necrosis) values, stomatal density and stomatal dimensions are not functions of atmospheric pollution in the species studied. It is possible that the variation encountered is the natural variation of populations.

The author is grateful to Prof.P.Khanna, Director, NEERI, Nagpur, and to Head, LEMD, for providing the necessary facilities. The author also wishes to thank Mr. D. Singh, Executive Director, Sun Flag Iron & Steel Co. Ltd., Bhandara for permission to collect data and materials.

References

- 1. Jones H 1983, Plants and microclimate Cambridge University Press, Cambridge, England
- Ahmad K J, Yunus M, Singh S N, Srivastava K., Singh N and Kulshreshta K 1988, In Perspectives in Environmental Botany Today & Tomorrow's Publishers, New Delhi.