J. Phytol. Res. 18(1): 47-52, 2005

EFFECT OF CYCOCEL AND SALINE IRRIGATION WATER ON GERMINATION, YIELD AND YIELD ATTRIBUTES IN DIFFERENT CULTIVARS OF BARLEY (HORDEUM VULGARE L.)

H.S. BHADAURIA and B.S. AFRIA*

Department of Plant Biotechnology Center, R.A.U., Beechwal, Bikaner (Rajasthan), India. *Agricultural Research Station, Durgapura Jaipur, R.A.U., Bikaner (Rajasthan), India.

Barley cultivar RD-2035 proved better with respect to number of effective tillers, leaf area, number of spikelets, straw yield, seed yield, test weight and harvest index as compared to BL-2, RD-2052 and RD-2516. Variety BL-2 had more germination percentage at 7 DAT and plant height at 30 and 60 DAS, while RD-2052 proved better in number of grains/ear and chlorophyll content as compared to the rest three varieties. Saline irrigation at EC_{12} dSm⁻¹ decreased germination percentage, root length, leaf area, chlorophyll content, protein content, seed yield, straw yield and harvest index and test weight as compared to control. Soaking of seed in cycocel (500 and 1000 mgl⁻¹) increased water potential, chlorophyll content, protein content and seed yield significantly. The study revealed that soaking of the seed in cycocel for five hours at 1000 mgl⁻¹ before sowing could ameliorate the adverse effect of saline irrigation in barley. The use of cycocel was also found economical. However no interaction was found significant.

Keywords : Barley; Cycocel; Saline irrigation; Yield.

Introduction

Barley (Hordeum vulgare L) is one of the most important cereals of the world. It is an important R abi c ereals occupying 8.41 lac hectares of area. It is also used to prepare malt for manufacturing beer, whisky, industrial alcohol and vinegar. Salt stress is a serious problem in crop production and about 7.01 million-hectare of land is affected by salinity and alkalinity problem in India¹. Plant growth retardant have shown p romises in a melioration of salt stress². The investigation was, therefore, carried out aiming to evaluate performance of different cultivars of barley and improving its tolerance to salinity through cycocel.

Material and Methods

The seed of four barley varieties BL-2 (salinity tolerant), RD-2052, Rd-2516 and RD-2035 (salinity susceptible) ware soaked in cycocel solution at 0, 500 and 1000 mgl⁻¹ for 5 hours. In the Petridishes (laboratory experiment), the different levels of salinity (EC₆ and EC₁₂ dSm⁻¹) were maintained with the help of saline water. Germination % and seedling length were recorded at 7 DAT (Days After Treatment).

In an other set of experiment cycocel soaked seeds were sown in the pots irrigated with saline waters of $(EC_6 \text{ and } EC_{12} \text{ dSm}^{-1})$ besides control. The observations were recorded and analysis done at vegetative (30 DAS), pre anthesis (60 DAS) and harvesting stages.

Leaf area was measured using LI-3100 area meter. Chlorophyll content was estimated by the method of Arnon³. Protein was estimated according to the method described by Lowry *et al.*⁴. Water potential was measured by pressure chamber (PMS Instrument Co, USA).

Results and Discussion

Data regarding germination and seedling growth have bean presented inTable 1. In the laboratory experiment, a significant increase in germination percentage was registered higher in variety BL-2 over varieties RD-2516and at par with variety RD-2035 and 2052. The root as well as shoot length were also found significantly higher in variety Bl-2 than the three other varieties. A perusal of data in Table -1 further revealed that soaking of seeds with cycocel (500 and 1000 mgl⁻¹) significantly increased root length while reduced shoot length as compared to control. These findings, which might be due to stimulatory effect of CCC, are similar to the observation recorded by Emam et al. in wheat. Seedling length (root and shoot) was found to be reduced signifiantly by saline irrigation of EC, and EC, dSm⁻¹ as compared to control. Decrease in seedling length might be due to accumulation of ions near root surface. Similar results were also obtained in wheat by earlier workers".

Soaking of seeds with cycocel (500 and 1000 mgl⁻¹) at 30 and 60 D AS (Table 2) decreased the plant h eight significantly as recorded earlier also^{8,9}. Reduction in plant height might be due to dwarfing character induced by CCC in barley. Application of CCC (500 and 1000 mg⁻¹) as a seed treatment significantly increased number of effective tiller 48

Bhadauria & Afria

Treatments	Germination (%)	Root length (cm)	Shoot length (cm)
Varieties			2
BL-2	83.5	9.64	9.09
RD-2516	80.7	9.31	8.63
RD-2052	81.8	9.35	8.67
RD-2035	82.7	9.22	8.65
SEm±	0.73	0.13	0.09
CD at 0.05%	2.04	0.37	0.24
Salinity(dSm ⁻¹)		8	
Control (BAW)	88.4	10.31	8.98
EC.	85.6	9.40	8.73
EC	72.4	8.45	8.59
SEm±	0.63	0.11	0.07
CD at 0.05%	1.76	0.32	0.21
$CCC(mg^{-1})$			
Control	75.2	8.36	9.35
500	82.9	9.29	8.72
1000	88.4	10.50	nging 8.21 mol
SEm±	0.63	0.11	0.07
CD at 0.05%	1.76	0.32	0.21
Interactions		-	
VxS			11.0001048
SEm±	1.27	0.23	0.15
CD at 0.05%	NS	NS	NS
VxC	1 E	Х.	and the second second second
SEm±	1.27	0.23	0.15
CD at 0.05%	NS	NS	NS
SxC	pard		5 A A
SEm±	1.10	0.20	0.13
CD at 0.05%	NS	NS	NS
VxSxC			2
SEm±	2.21	0.41	0.27
CD at 0.05%	NS	NS	NS

 Table 1. The effect of different varieties, levels of CCC and saline irrigation on Germination %, Root length and Shoot length at 7 days after treatment.

Table 2. The effect of different varieties, levels of CCC and saline irrigation on Plant height (cm) and number of effective tillers per plant at different growth stages.

Treatments	Vegetative stage (30 DAS)		Pre-anthesis stage (60 DAS)		S) Effecti	Effective tillers per plant (80 DAS)		
Varieties	А. В.		1 a		е. 14 ст. 2			
BL-2	1 × × +	21.7	¥		42.2		5.07	
RD-2516		21.2	. " -		41.2	art	5.00	
RD-2052		21.4	Х		41.4		5.44	
RD-2035	а в 11 г.	21.4	1. 1.		40.7		5.89	Linomits.
SEm±	di ta sa sa	0.07			0.33	at ni pra	0.07 : 10	ច្រោះ ពេរ ស
CD at 0.05%	÷.	0.20		•	0.93		0.18	e 8
Salinity(dSm ⁻¹)		19			*	dun i	· · · · · · · · · · · · · · · · · · ·	idd _a r a
Control (BAW)		22.1			44.7		5.75 iga	e hae pop.
EC,		21.5			41.7		5.33	
EC	. ·	20.7		· · ·	37.8		4.97	· · ·
SEm±		0.06			0.29	3.00	0.06	
CD at 0.05%		0.17			0.81		0.16	Cont

Treatments Vegetative stage (30 DAS) Pre-anthesis stage (60 DAS) Effective tillers per plant (80 DAS) CCC (mg⁻¹) Control 21.7 42.8 5.00 500 21.4 41.3 5.36 1000 21.2 40.0 5.69 SEm± 0.06 0.29 0.05 CD at 0.05% 0.17 0.81 0.16 Interactions V:S SEm± 0.12 0.58 · 0.11 CD at 0.05% NS NS NS V:C SEm± 0.12 0.58 0.11 CD at 0.05% NS NS NS SIC SEm± 0.10 0.50 0.10 CD at 0.05% NS NS NS VXSXC SEm± 021 1.01 0.20 CD at 0.05% NS NS NS

J. Phytol. Res. 18(1): 47-52, 2005

 Table 3. The effect of different varieties, levels of CCC and saline irrigation on leaf area per plant and leaf area index (LAI).

Treatment	Leaf area per	plant (cm ²)	Leaf area index (LAI)
	Vegetative	Pre Harvest	Vegetative	Pre Harvest
	stage(30 DAS)	stage (60DAS)	stage(30 DAS)	stage (60DAS)
Varieties				
BL-2	52.2	143	0.474	1.30
RD-2516	50.9	143	0.469	1.31
RD-2052	53.8	148	0.491	1.35
RD-2035	54.9	149	0.502	1.36
SEm±	0.44	0.68	0.004	0.013
CD at 0.05%	1.23	1.89	0.012	0.037
Salinity(dSm ⁻¹) Control (BAW) EC ₆ EC ₁₂ SEm± CD at 0.05%	58.9 53.7 44.7 0.38 1.06	160 142 124 0.7 1.8	0.538 0.425 0.419 0.004 0.011	1.46 1.37 1.15 0.011 0.032
CCC (mg ⁻¹) Control 500 1000 SEm± CD at 0.05%	50.7 53.1 55.1 0.38 1.06	140 146 151 0.7 1.8	0.463 0.486 0.503 0.004 0.011	1.27 1.33 1.38 0.011 0.032

Contd.

50		shadauria & Afria			
Treatment	Leaf area per plant (cm²)VegetativePre Harveststage(30 DAS)stage (60DAS)		Leaf area index (LAI)VegetativePre Harveststage(30 DAS)stage (60DAS)		
Interactions VxS SEm± CD at 0.05% VxC SEm± CD at 0.05% SxC SEm± CD at 0.05%	0.77 N.S 0.77 N.S 0.67 N.S	1.30 N.S 01.12 N.S 1.12 N.S	0.008 N.S 0.008 N.S 0.007 N.S	0.023 N.S 0.020 N.S 0.020 N.S	
VxSxC SEm± CD at 0.05%	1.34 N.S	2.25 N.S	0.013 N.S	0.040 N.S	

Table 4. The effect of different varieties, levels of CCC and saline irrigation on seed yield, straw yield/plant and harvest index

index.	Food viald/plant(gm)	Straw vield/plant(gm)	Harvest index(%)
l'reatments	Seeu yieiu/piaii(giii)	Sum Jun plun (Sill)	
Varieties	0.10	14.7	38.2
BL-2	9.10	14.7	39.2
RD-2516	9.64	14.7	38.4
RD-2052	8.82	14.1	40.3
RD-2035	10.3	0.10	0.15
SEm±	0.12	0.10	0.42
CD at 0.05%	0.35	0.28	0.12
Salinity(dSm ⁻¹)		160	413
Control (BAW)	10.8	15.5	28 56
EC ₆	9.38	15.0	37.23
EC	8.31	13.8	013
SEm±	0.11	0.09	0.15
CD at 0.05%	0.30	0.24	0.00
CCC (mg ⁻¹)			1 774
Control	8.74	14.5	20.1
500	9.52	14.7	59.1
1000	10.2	15.0	40.6
SFm+	0.11	0.09	0.13
CD at 0.05%	0.30	0.24	0.36
Interactions		a	
111CLACHOUS	3		604 1929 and
VAD SEmt	0.22	0.17	0.26
	NS	• NS	NS
CD at 0.05%			
VXC	0.22	0.17	0.26
SEM±	NIS	NS	NS
CD at 0.05%	Gri		1
SxC	0.10	0.15	0.22
SEm±	U.17	NS	NS
CD at 0.05%	IND		
VxSxC		0.30	0.45
SEm±	0.38	NIC	NS
CD at 0.05%	NS		

36.

J. Phytol. Res. 18(1): 47-52, 2005

Freatment	Chlorophyll co	ontent (mg/g Fr. Wt.)	Protein content (mg	Protein content (mg/g Fr. Wt.)			
	Vegetative stage(30 DAS)	Pre Harvest stage (60DAS)	Vegetative stage(30 DAS)	Pre Harvest stage (60DAS)			
Varieties	ć						
BL-2	3.61	3.64	17.2	20.5			
RD-2516	4.2.7	4.25	. 17.2	20.4			
RD-2052	3.60	3.66	19.9	20.0			
RD-2035	3.61	3.67	17.0	20.1			
SEm ±	0.10	0.10	0.11	0.20			
CD at 0.05%	0.30	0.28	NS	NS			
Salinity(dSm ⁻¹)				9			
Control (BAW)	4.41	4.43	18.1	22.2			
EC,		~					
EC.	3.64	3.70	16.8	20.3			
SEm ±	3.26	3.27	16.2	18.3			
CD at 0.05%	0.09	0.08	0.10	0.18			
	0.26	0.24	0.27	0.50			
CCC (mg ⁻¹)							
Control	3.22	3.24	16.3	19.1			
500	3.88	3.91	17.1	20.4			
1000 *	4.21	4.25	17.8	21.3			
SEm ±	0.09	0.08	0.10	0.18			
CD at 0.05%	0.26	0.24	0.27	0.50			
Interactions			×				
VxS		s					
SEm±	0.18	0.17	0.19	0.36			
CD at 0.05%	N.S	N.S	N.S	N.S			
VxC							
SEm± ·	. 0.18	0.17	• 0.19	0.36			
CD at 0.05%	N.S	N.S	N.S	N.S			
SxC		8					
SEm±	0.16	0.15	0.17	0.31			
CD at 0.05%	N.S	N.S	N.S	N.S			
VxSxC				0.63			
SEm±	0.32	0.30	0.34	N.S			
CD at 0.05%	N.S	N.S	N.S	N.S			

Table 5 The effect of	of different varieties	e levels of CCC ar	nd saline irrigation on	chlorophyll and	protein content	(mo/o Fr Wt)
			io same in Eauon on		DIOLOHI COILIGHT	1116/611. 11 6./.

Table 6. The effect of different varieties, levels of CCC and saline irrigation on Leaf water potential (bar) and effect of Cycocel on net profit (Rs/ ha).

Treatments	Vegetative stage (30 DAS)	Pre Harvest stage (60 DAS)	Net Profit Rs/ha
Varieties			
BL-2	-17.4	-23.7	
RD-2516	-17.6	-23.9	
RD-2052	-17.5	-24.0	
RD-2035	-17.6	-23.9	
SEm ±	0.13	0.14	
CD at 0.05%	NS	NS	
Salinity(dSm ⁻¹)			
Control (BAW)	-16.4	-22.3	
EC	-17.3	-23.9	
EC	-18.9	-25.3	
SEm ±	0.10	0.12	
CD at 0.05%	0.27	0.35	
CCC (mg ⁻¹)			a de la constante de la consta
Control	-18.2	-24.5	29058
500	-17.51	-23.9	29937
1000	-16.97	-23.2	31566
SEm ±	0.10	0.12	44.8
CD at 0.05%.	0.27	0.35	109.8
Interactions			
VxS			
SEm±	0.22	0.25	
CD at 0.05%	N.S.	N.S.	
VxC	8		
SEm±	0.22	0.25	
CD at 0.05%	N.S.	N.S.	
SxC		2	
SEm±	0.19	0.21	
CD at 0.05%	N.S.	N.S.	
VxSxC			5 a
SEm±	0.38	0.43	
CD at 0.05%	N.S.	N.S.	

•

per plant (Table 2), leaf area and LAI at 30 and 60 DAS (Table 3). The results of study are similar to findings of Smith⁹ and Nayler and Saleh¹⁰. Saline irrigation at EC_6 and EC_{12} dSm⁻¹ si gnificantly reduced the plant, number of effective tiller per plant (Table 2), leaf area and LAI at all growth stages (Table 3). Saline water irrigation might lead to osmotic inhibition and toxic effect of ions and nutritional imbalance of elements and finally culminates in decreased growth¹¹. The results are also in conformation with findings of Asana and Kale¹² in wheat.

Cycocel (soaking at 500 and 1000 mgl⁻¹) significantly increased the seed yield, straw yield and harvest index significantly as compared to control (Table 4). Similar results have bean reported in wheat¹³. The decline in seed yield due to salinity might be due to delay in flowering and reduction in number of seeds per ear.

Results on chlorophyll content (Table 5) showed that the variety RD-2052 was having significantly higher chlorophyll content as compared to untreated seeds. However the application of saline water (EC_6 and EC_{12} dSm⁻¹) reduced the chlorophyll content significantly as compared to control (Table 5). Similar results have bean recorded earlier in guar¹⁴. The reduction in chlorophyll under high salinity might be destroyed due to loosened binding between chlorophyll and chloroplast protein.

Cycocel treatment (500 and 1000 mgl⁻¹) increased the leaf protein content significantly at 30 and 60 DAS while the salinity at both levels reduced the protein content under saline water is perhaps due to decrease in amino a cid content and other metabolites¹⁵.

Perusal of data in Table 6 revealed that soaking of seeds with CCC at 500 and 1000 mgl⁻¹ significantly increased the water potential over control at both growing stages (30and 60 DAS). This is perhaps due to stimulatory effect of cycocel in increasing the water potential. There was a significant decline in water potential as in both growth stages with increasing levels of salinity (EC₆ and EC₁₂ dSm⁻¹) over control.

The economics of cycocel was worked out (Table 6). The data revealed that there was an increase in net profit of Rs. 704 and 2086 / ha with cycocel treatment of seeds with 500 and 1000 mg⁻¹ respectively as compared to control. Therefore, the use of cycocel (1000 mgl⁻¹) seems to be more economical to the farmers for increasing the yield and net profit.

References

1. Yadhav J P S and Gupta I C 1980, Usar Bhumi Ka Sudhar (in Hindi), ICAR, New Delhi.

- 2. Cathey H M 1964, Physiology of growth regarding chemicals. Ann. Rev. Plant Physiol. 15 271-299
- 3. Arnon D I 1949, Copper enzymes in isolated chloroplast, polyphenol oxidase in Beta vulgaris, *Plant Physiol.* 24 1-5
- Lowry O H, Resebrough N J, Farr A L and Randall R J 1951, Protein measurement with Folin –Phenol Reagent. J. Biol. Chem. 193 265-275.
- 5. Emam Y O, Tfazoli E and Kari H R 1996, Growth and development of winter wheat cultivars Ghods as affected by chloromequat and chloride. *Indian .J. Agri. Sci.* 27 23-31.
- Poustini K 1995, Physiological responses of two wheat cultivars to salinity stress. *Indian .J. Agri* Sci. 26 57-64
- Farida Begum 1996, A comparative study of effect of NaCl salinity on germination of wheat and Triticale. Bangladesh J. Sci. and Indus. Res. 31 43-51
- Wandington S R and Cartwright P 1986, Modification of yield components and stem length in spring barley by application of growth retardant prior to main shoot stem elongation. J. Ag. Sci.
- (U.K.) 107 367-375.
 Smith D L 1992, Effect of chlormequat and ethephons on grain production of spring barley. *Agronomy J.* 84 934-949.
- 10. Naylor R E L and Saleh M E 1987, Effect of plant spacing and cycocel, the plant structure, growth and yield of winter barley. Crop Research 27 97-109
- 11. Levitt J 1972, Responses of plant of environmental stress Vol.-I Academic Press, New York.
- Asana R D and Kale U R 1965, A study on salt tolerance of four wheat varietes. *Indian J. Plant Physiol.* 8 5-22
- David M S and Goswamy N N 1985, Soil salinity fertility moisture interaction in relation to yield and nutrient uptake by wheat and maize. Ann. Agril. Res. 7 89-102
- Afria B S, Nathawat N S and Yadav M L 1998, Effect of cycocel and saline irrigation of physiological attributes, yield and its components in different varieties of guar (Cyamopsis tetragonoloba L). Indian J. Plant Physiol. 3 47-48
- Murmukar C V and Chavan P D 1986, Influence of salt stress on biochemical processes in chick pea. *Plant Soil* 96 439-443.

e