J. Phytol. Res. 20(2): 189-192, 2007

SEED PROTEIN PROFILES IN WITHANIA SOMNIFERA (L.) DUN. PLANT TYPES

MOHSINA IQBAL and ANIMESH K. DATTA*

Department of Botany, Genetics and Plant Breeding Section, Kalyani, University, Kalyani - 741235, India. * e-mail : dattaanimesh@gmail.com.

Seed protein content and electrophoretic banding pattern of seed protein using SDS-PAGE has been observed in Withania somnifera (L.) Dun. plant types (control and 9 induced macromutants). Thick stem I, bushy, broad leaf and late flowering mutants had relatively higher protein contents. Gross similarities and differences in electrophoretic banding pattern have been noted among the genotypes. Specific protein bands have been detected in different mutants. Results obtained have been discussed.

Keywords: Macromutants; Protein profile; SDS-PAGE; Withania somnifera.

Introduction

Identification of germplasm diversity based on standard morphological markers has proved to be inadequate because of the wide spectrum of phenotypic variation and their interaction with environment¹. In such instances electrophoretic patterns of seed can be used effectively to decipher interrelationship between/among genotypes and to screen protein markers for identification²⁻⁴. Electrophoresis technique is widely used because of its reliability, rapidity and cost effectiveness. With this view the present investigation has been undertaken for 'protein fingerprinting' of the plant types of Withania somnifera (L.) Dun. (control and 9 induced macromutants⁵), a medicinal crop plant of the family Solanaceae following electrophoretic banding (SDS-PAGE) polymorphism.

Materials and Methods

Seed protein content of the genotypes (control and 9 macromutants) was estimated following Lowry et al.6. Protein fractionations were done by the method of Osborne7. To study protein polymorphism in W. somnifera plant types (control; mutants: dwarf, lax branching, thick stem I and II, bushy, broad leaf, ovate leaf, early flowering and late flowering), one dimensional SDS-PAGE (10% separating gel and 4.5% stacking gel) was carried out following Laemmli⁸ in a vertical gel system. For the purpose, total protein was extracted in 0.2M Tris-HCl buffer (pH = 8.5), suspended overnight (0-4°C) and centrifuged at 15000 rpm (-4°C) for 30 minutes. The protein samples along with sample buffer containing bromophenol blue were hydrolysed in boiling water (1 - 2 mins.), cooled and loaded in lanes with micropipettes (8 µl/lane). A protein molecular weight marker (GENEI, Bangalore, Cat. No. PMW - M) was also incorporated into the gel (as marker

lane) as reference to detect molecular weights of bands. The gel was run at 30mA (3 mA/lane) for 2 hours, stained in Coomasie Brilliant Blue R250 overnight, destained and stored in 7% acetic acid.

Gel preparation was analyzed in a gel documentation unit (Ultra Lum, USA) using the software Total Lab. Bands were detected and molecular weights and pixel peak (based on area, volume and intensity of the bands) of each band were computed.

Results and Discussion

Seed protein content (%) in control was noted to be 12.00 and it was 11.25 in dwarf, 10.75 in lax branching, 20.50 in thick stem I, 10.75 in thick stem II, 15.25 in bushy, 18.00 in broad leaf, 10.00 in ovate leaf, 10.75 in early flowering and 18.23 in late flowering.

The protein banding pattern of all genotypes (Fig. 1) were compared and results are presented in Table 1. Diverse banding pattern were evidenced in all the genotypes. R_ values ranged from 0.163 to 0.945 indicating wider range of variability in protein band expression. Molecular weights of the bands varied from 13.2 kD to 104.1 kD. Among the plant types, total number of bands ranged between 17 to 39. Number of polypeptide bands detected were 30 in control, 17 in dwarf, 23 in lax branching, 37 in thick stem I, 32 in thick stem II, 30 in bushy, 30 in broad leaf, 34 in ovate leaf, 39 in early flowering and 36 in late flowering. The protein band number 4, 6, 12, 15, 22, 24, 31 and 34 to 40 were universally present in all genotypes, which indicated that the genes controlling the expression of these bands appeared to behave as a single block. Polypeptide band number 19 and 23 were exclusively absent in control and dwarf respectively; while, 17 was specific for early flowering

190

Table 1. SDS-PAGE banding pattern of seed storage protein in control and macromutants of W. somnifera.

*

.

										bal &	Datta	a			2 d -						<u>, 1</u> ,
	<i>Late</i> Flowering	+	+	•	+	+ *	+	+	+	+	+	•	+	+	+	+ "	.+	•	+	, + 	+
	Early flowering.	÷	+	+	+	× +	+	+	+	·+	+	+	•+.	+	+	+	+	+	+	`` +	+
	Ovate leaf	+	+	·	+	+	+	+	+	+	+	+	+	٠	+	+	+		+	+	+
	Broad leaf	•	• .	•	+	•	+	• .	•	•	+	+	+	+	+	+	+	ı	+	+	+
N.	Bushy	÷	•	۰.,	+	+	+	•	+	+	.+	•	+	8	+ ,	+	+	•	+	+	+
Plant types	Thick stem II	•	•	н с 1	+	+	+	+	+	+	+	•1	+	•	+	ř +	+	•	•	+	+
	Thick stem I	÷	+.	+	+	` +	+	+	+	+	+	+	+	+	+	+	Ŧ	,	+	+	+
8	Lax branching	•		•	+	+	+	ı	а	ı	•	. 1	+	1	•	+	J.	,	·	+	•
	Dwarf	•		F	+	+	Ŧ	,	,	ı	•	ļ	+	ı	ï	+	ı	ı	•	+	1
1	Control	ł	,	1	+	+	+	ı	,	÷	+	,	+	+	+	÷	+		+	•	+
MM	(kD)	104.1	92.8	87.4	83.9	76.3	73.1	66.7	64.1	58.5	53.9	51.9	49.7	48.4	47.I	44.4	41.6	38.6	36.0	33.8	33.1
R	valuc	0.163	0.202	0.220	0.232	0.258	0.270	¥ 0.297	0.309	6220	0.369	0.384	¢ 0.402	0.414	0.426	0.453	0.483	0.516	0.546	0.573	0.582
Band	number	_	2	m	4	5	6	7	80	6	0	=	12	13	14	15	16	17	18	61	20

١

Continued.....

~
0
-
=
1
10
0
Ö
-
1200
•
_
_
-

_		•					J	. Phy	rtol. F	tes. 2	0(2)	: 189	-192,	200	7							2
ď	Late Flowering	+	÷	÷	+	+	÷	÷	.+	+		+	+	+	+	+	+	+	+	+	+	36
	Early flowering	+	+	+	+	+	+	. +	+	+	•	+	, +	+	+	+	+	+	+	+	+	39
	Ovate leaf	+	+	+ .	+	+	+	+	+	+		+			+	+	+	+	+	+	+	\$
	Broad leaf	+	+	+	+	ı	+	.+	+	+	ı	+	+	+	+	+	+	+	÷	÷	+	0 2
	Bushy	+	+	+	+	+	+	+	+	+		+	ı		+	+	+	+	+	· +	+	30
	Thick stem II	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	Ť	+	+	+	+	33
	Thick stem I	+	+	+	+	+	+	+	+	+	+	+	c 1	•	+	+	+	+	+	+	+	37
	Lax branching	•	+	+	Ŧ.	+	+	+	+	+	•	. +		+	+	+	+	+	+	+	+	ន
	Dwarf		+	•	+	ı	•	•		•	ı	+	•	+	+	+	+	+	+	+	+	17
	Control	+	`+	+	+	+	+	+	+	+	•	+.	+	ſ	+	+	+	.+	+	+	÷	30
MM	(KD)	32.4	31.7	29.4	28.4	26.6	25.9	25.4	24.5	23.9	23.6	22.6	21.1	19.8	18.9	18.4	17.4	16.4	14.9	14.4	13.2	
R	value	0.591	0.600	0.633	0.648	0.678	0.690	0.699	0.717	0.729	0.735	0.756	0.789	0.816	0.834	0.843	0.864	0.882	0.912	0.921	0.945	
Band	number	21	8	3	24	52	52	77	8	କ୍ଷ	8	31	32	33	¥	35	36	37	8	33	0	Total

J. Phytol. Res. 20(2): 189-192, 2007

191

Iqbal & Datta

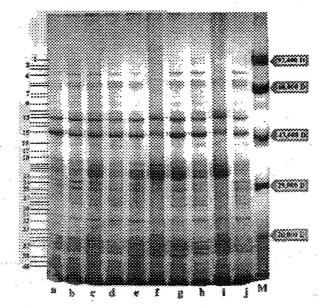


Fig. 1 (a – j, M). Protein profiles in *Withania* plant types (control and mutants) from SDS – PAGE. (a) Control (b) Late flowering (c) Early flowering (d) Ovate leaf (e) Broad leaf (f) Dwarf (g) Thick stem II (h) Thick stem I (i) Lax branching (j) Bushy (M) Marker.

mutant. Dwarf mutant lacked the expression of band nos. 1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 23, 25, 26, 27, 28, 29, 30 and 32. Band nos. 1 and 2 were only present in thick stem I, ovate leaf, early flowering and late flowering mutants while band no. 3 was detected from thick stem I and early flowering mutants. Band no. 5 showed its expression in all genotypes excepting broad leaf mutant. Polypeptide band nos. 1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20 and 21 were absent in lax branching mutant. Band no. 11 has been characteristic of thick stem I, ovate leaf, broad leaf and early flowering while band no 13 was present only in control, thick stem I, broad leaf, early flowering and late flowering plant types. Polypeptide band 30 has been specific to thick stem I and II mutant. Band 32 is represented in all genotypes except in bushy, lax branching, thick stem I, dwarf and ovate leaf mutants. Bushy, thick stem I and II and ovate leaf also lacked the expression of band no. 33.

The polypeptide bands were of very high (>70.0 kD: 2 to 6), high (40.0 - 70.0 kD: 2 to 10), medium (25.0 - 39.9 kD: 3 to 11) and low (<25.0 kD: 9 to 12) molecular

weights. Thick stem I and early flowering mutants had the maximum number of very high to high molecular weight bands; while, dwarf mutant demonstrated the minimum number of such bands. Based on pixel intensity, the bands were classified into faint (< 80 pixel; number : 3 to 13), medium (80-100 pixel; number : 2 to 18) and intense (>100 pixel; number : 4 to 22) and the genotypes were characterized as follows : 6 F + 2 M + 22 I in control, 3 F + 1 M + 13 I in dwarf, 3 F + 9 M + 11 I in lax branching, 13 F + 14 M + 10 I in thick stem I, 8 F + 6 M + 18 I in thick stem II, 8 F + 18 M + 4 I in bushy, 6 F + 6 M + 18 I in broad leaf, 12 F + 11 M + 11 I in ovate leaf, 9 F + 11 M + 19 I in early flowering and 8 F + 11 M + 17 I in late flowering.

Thus, electrophoretic characterization of seed protein of the mutant plant types compared to control may be used as an additional parameter in better understanding of genetic variations occurring among them. Such variations can be utilized in breeding programme for improvement. Further, this kind of study could lead to the detection of genotype specific band(s) which may be used as reliable seed protein marker. **References**

- Mannetji L 1984, Consideration on the taxonomy of the genus *Stylosanthes*. Stac H M and Edye L A (eds.) Academic Press, Sydney.
- Cook R J 1984, The characterization and identification of crop cultivars by electrophoresis. *Electrophoresis* 565-72.
- Taylor J N and Schussler L 1984, Sorghum cultivar verification by electrophoresis. J. Sci. Food Agric. 351.
- Kumar H and Ram H H 1989, Identification of soybean cultivars using electrophoretic pattern of seed proteins. Crop Improvement 16 5 – 8.
- Iqbal M 2006, Induced mutagenesis in Withania somnifera (L.) Dun. Ph. D. Thesis, University of Kalyani.
- Lowry O H, Rosebrough N J, Farr A L and Randall R J 1951, Protein measurement with Folin phenol reagent. J. Biol. Chem. 193 265 – 275.
- Osborne D J 1962. Effects of kinetin on protein and nucleic acid metabolism in *Xanthium* leaves during senescence. *Plant Physiol.* 87 595 – 602.
- Laemmli U K 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T_a. Nature 227 680-685.

192