STUDIES ON THE EFFECT OF *EUCALYPTUS* PLANT MATERIAL AMENDMENT ON THE POPULATION DYNAMICS OF SOIL MICROFUNGI

POONAM DIXIT, R.K. JAIN and P.K. MATHUR

Unit of Industrial Microbiology, P.G. Department of Botany, B.S.A. College, Mathura -281001, India.

In the present investigation population dynamics of soil microfungi in relation to ecological factors were studied after 10,20 and 30 days of amendment. The *Eucalyptus* plant attached leaves (powdered) material was used to amend the cultivated agricultural soil in the concentration of 1.0, 1.5, 2.0, 5.0 and 10.0%. The mycoflora of amended soils were studied both qualitatively and quantitatively in relation to pH, temperature, moisture, nitrogen, organic carbon, organic matter, available phosphorous, exchangeable Na, Ca, K and soluble carbonate. Definite variation with amendments have been observed for soil fungi in cultivated soil. The soil mycoflora comprised of 36 fungal isolates, out of these 6 belonged to phycomycetes, 1 to ascomycetes, 24 to deuteromycetes and 5 to mycelia sterilia. The genera arranged in decreasing order of number of species were *Aspergillus, Fusarium, Penicillium, Mucor, Rhizopus, Chaetomium* and *Drechslera*.

Keywords: Amendment; Cultivated soil; Microfungi.

Introduction

The soil microbial biomass is responsible for break down of the organic materials. The tissues of the plants are dumped or buried in the soils subsequently that undergoes biological decomposition. It is the microbes that make these changes. For improving the fertility of soil, application of organic manure, fertilizers and plant materials were used. These amendments may affect the soil ecosystem and physico-chemical characteristics of soil. The physicochemical characteristics and soil microflora are of great significance in microbiology¹⁴. In the present study an attempt has been made to analyse the effect of *Eucalyptus* plant attached leaves enrichment on fungal population in soils at different time intervals.

Material and Methods

The agricultural cultivated soil was collected from the farmer field. For amendments soil samples were collected aseptically, air dried, sieved and stored in screw capped bottles. To these soil samples 1.0, 1.5, 2.0, 5.0 and 10.0 percent solution (w/w) of attached leaves (powdered) was added. The soil fungi were isolated following soil plate method⁵ using Martin rose Bengal medium⁶. Natural soil samples without any amendment to serve as control were also similarly maintained. The isolation were made on 10, 20 and 30 days after amendments. Physico-chemical characteristics of attached leaves amended soils were analysed as per the prescribed methods^{7,8}.

Result and Discussion

Soil mycoflora of amended soil at varying time intervals comprised of 36 fungal isolates (Table 1). Out of these, 6 species belonged to phycomycetes, 1 to ascomycetes, 24 to deuteromycetes and 5 to mycelia sterilia.

The generic wise representation was dominated by Aspergillus with 9 species, followed by Fusarium (3 species) while, Mucor, Rhizopus, Penicilium and Trichoderma were represented with 2 species each, and Mycelia sterilia were represented by 5 species. Moreover, single species were isolated for Chaetomium, Acrophialophora, Memmoniella, Macrophomina, Myrothecium, Paecilomyces, Syncephalastrum and Cunnighamella.

In the present study a higher fungal population was recorded in amended soils in comparison to unamended soil after 10 days of amendment. Many workers have reported the beneficial effect of amendments in increasing the fungal population and ascribed the higher nutrient supply as the reason for it^{3,9-18}. It is also clear from the data (Table 2) that fungal population of amended soils decreased with the increase of incubation period. The reason for it may be the soil inhabitants, hence they increased in number as revealed after 10 days of amendment, but at later stages nutrient level decreases and consequently fungal counts get lowered.

Physico-chemical properties of cultivated soil amended with different percentages (1.0, 1.5, 2.0, 5.0 and 10.0%) of attached leaves of *Eucalyptus* plant after an incubation of 10, 20 and 30 days have been presented in Table-3. After 10 days interval, soil temperature decreased from 37.3° C (1%) to 36.4° C (10%) and an increase in soil moisture from 3.18%(1%) to 16.0%(10%). There was an all

Dixit et al.

Table1. Distribution of fungal species at different time intervals in cultivated soil amended by *Eucalyptus* plant attached leaves (powdered) material.

	Concentrations/time interval														
Name of Fungal Species	1.0%		1.5%		2.0%		6	5.0%			10.0%		_		
	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
Cunninghamella echinulata	+	+	+	+	+	+	+	+	+	-	-	-	-	-	-
Mucor mucedo	+	+	+	+	-	-	+	+	+	-	-	-	-	-	-
M. racemocus	+	+	+	+	+	+	+	+	+	-	-		-	-	-
Rhizopus homothalicus	+	+	+	+	+	+	+	-	-	-	-	-	-		-
R.nigricans	+	+	• + •	+	+	+	+	+	+	-	-	-	-	-	-
Syncephalastrum racemosum	+	÷ "		-	-	-	-	` -	-	-	-	-	-	-	-
Chaetomium globosum	+	+	. +	-	-	-	+	+	· +	+	+	+	+	+	+
Acrophialophora fusispora	+	-	-	-	-	-	-		-	• -	-	1. - 1	-		-
Alternaria alternata	+	+	+	+	+	+	+	-	-	-	•	-	-	-	-
Aspergillus flavus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
A. fumigatus-l	+	+	+	+	+	+	+	+	+	+	+	+		-	-
A. fumigatus-2	+	+	+	+	+	+	+	+	+	+	-	+	-	•	-
A. nidulans-l	+	+	+	+	+	+	+	+	+	+	+	+	· · + ·	+	+
A. nidulans-2	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+
A. niger-1	+	+	+	+	+	+	+	* *	-+	+	+	+	+	· +	+
A.niger-2	+	+	+	+	+	+	+	· +	+	• ,	-	+	-	+	+
A.niger-3	+	+	+	+	+	+	-	-	-	•		-	-		-
A.terreus	+	+	+	+	+	+	+	+	+	-	-		+	+	+
Curvularia geniculata	+	+	+	-	-		-	-	-	ŀ	-	-		·	-
Drechslera tetramera	+	+	-	-	-	-	-	-		-	<u></u>	-	<u> </u>	-	-
Fusarium equiseti	+	+	-	+	-		+	-		-	-	-	-	-	-
F. oxysporum	+	+	+	+	+	+	-	-		+	+	-	+	+	+
F. solani	+	+	+	+	+	+	+	+	+	-	· • •	1.00	+	+	+
Macrophomina phoseolina	+	-	-	-	-		-	-	-	-	-			<u> </u>	1-
Memmoniella echinata	+	+	-	-	-	-	-	-	-	-	-	-	·		-
Myrothecium roridum	-	+	-	- 	-	-	-			-	-	-		-	-
Paecilomyces inflatus	+	-	-		-	-	-	-	-	-	1 .		-	Ŀ	1
Penicillium janthinellum	+	+	+	+	+	+	+	+	+	-	-	-	127	-	-
Penicillium oxalicum	+	+	+	+	+	+	+	+	+	-	-	-		-	-
Trichoderma glaucum	+	+	-		-	-	-	-	-	-	1		-	•	-
Trichoderma roseum	+	+	-	+	+	+			1	-	-	-	-	-	-
Mycelia sterilia-l	+	+	+	+	+	-	+		1.12	-	-	+	+	-	+
Mycelia sterilia-2	-	-	-	+	+	+	+		+ +	+	+	+	-	+	+
Mycelia sterilia-3	+	+	+	-	-	-	+	_		-	-		+	-	-
Mycelia sterilia-4	+	+	-	. +	-	+	+			+	+	+		+	_
Mycelia sterilia-5	+	+	- 1	+	-	-	- 1		3	-	-	-	-	1	-

144

J. Phytol. Res. 18(2): 143-148, 2005

S.N.	2 * 	Cultivated soil									
- 	··· · ·		1%	1.5%	2%	5%	10%				
1.	Fungal	a	4.598	4.684	4.713	4.482	4.487				
2.	Bacterial	a	5.029	5.117	5.139	4.907	4.917				
3.	Actinomycetes	a	4.828	4.919	4.951	4.716	4.724				
4.	Fungal	b	4.496	4.616	4.681	4.421	4.487				
5.	Bacterial	b	4.910	5.031	5.100	4.841	4.907				
6.	Actinomycetes	b	4.699	4.824	4.892	4.637	4.699				
7.	Fungal	С	4.362	4.447	4.616	4.404	4.467				
8.	Bacterial	с	4.776	4.865	5.036	4.826	4.890				
9.	Actinomycetes	с	4.564	4.656	4.828	4.616	4.684				
		1		1							

Table 2. Total microbial counts of attached leaves (powdered) amended cultivated soil after 10 days (a), 20 days (b) and 30 days (c) of incubation. (Expressed in terms of mean log values \log_{10} colony forming unit (C.F.U.)/gram

Table 3. Physico-chemical characterization of cultivated soil with amendment of attached leaves (powdered) after 10 days(a), 20 days (b) and 30 days (c) interval.

S.N.	Physico-chemical characteristics	5 2 3	Cultivated soil					
		8 8 8	18	15%	28	5%	10%	
1.	SoilTenperature	a	3730	3740	3641	364	364	
2.	SoilMoisture	a	318	401	512	1099	1600	
3.	SaildH	a	75	77	77	65	88	
4.	WaterHoldingcapacity	a	31.00	3192	4321	5382	60.71	
5.	OrganicCarbon	a	067	0.75	045	0.75	096	
6.	TotalNihoogn	a	0057	0064	0038	0065	0083	
7.	OrganicMatter	a	1155	1296	0778	1293	1655	
8.	Available (com)	a	2000	1500	1000	2500	3000	
9.	Exchangebena	a	1235	1235	17.72	2012	2012	
10.	ExchangebleCa	a	1600	14.30	12.70	800	742	
11.	ExchangebleK	a	1032	1032	1150	1300	1400	
12.	SolibleCarbonate	a	2800	3400	5200	6000	8000	
1.	SoilTemperature	b	3850	3810	3713	3740	3731	
1. 2. 3.	SoilMoisture	b	233	366	499	1000	156	
3.	Soild	b	78	80	79	70	87	
4.	WaterHoldingcapacity	b	31.56	32.79	4393	5420	61.10	
5.	OrganicCarbon	b	066	074	044	0.76	094	
6.	TotalNiboon	b	0056	0063	0038	0065	0081	
Ť.	OrcanicMatter	b	1137	1279	0.761	1310	1620	
8.	Available (pm)	b	21,11	1480	1050	2500	31.00	
9.	ExchangebleNa	Ď	1222	1200	17.11	2000	2630	
10.	ExchangebleCa	Ď	1590	1400	1200	750	700	
11.	Exchangebek	Ď	1010	10.30	11.10	1250	1317	
12	SolibleCarbonate	Ď	2789	3340	51.30	5940	7920	
1	SoilTemperature	C	3920	3885	3799	3890	3800	
2.	SoilMoisture	C	146	278	401	909	14.72	
3.	Soild	C	74	87	87	77	87	
<u>4.</u>	WaterHobingcapacity	C	3199	3301	4401	54.96	61,93	
5.	OrganicCarbon	C	066	0.73	043	0.78	045	
6.	ToalNihoon	C	0,056	0063	0037	0067	0081	
7 .	OranicMatter	C	1137	1262	0.743	1344	1637	
8.	Available (com)	C	2200	1600	1100	2550	31.70	
<u>9</u> .	Exchangebena	C	1198	1190	1691	1940	25.70	
10.	ExchangebeCa	C	1581	1350	1150	630	698	
11.	ExchangebleK	c	1000	1000	1090	1100	1300	
12	SolbeCarbonate	č	2697	3290	5090	58.70	78.70	

Dixit et al.

S.No.	Factor	Fungi	Bacteria	Actinomycetes
1.	Soil Temperature	r=-0.22232	r=-0.24408	r=-0.27139
		t=0.84326	t=0.93579	t=1.05631
2.	Soil Moisture	r=-0.31426	r=-0.29194	r=-0.26457
		t= 1.19354	t=1.10054	t=0.98196
3.	Soil pH	r=0.06118	r=0.04133	r=0.04133
		t=0.22099	t=0.14915	t=0.14915
4.	Water Holding capacity	r=-0.32027	r=-0.30363	r=-0.28021
	1. A.	t= 1.21896	t=1.14899	t=1.05247
5.	Organic Carbon	r=-0.56205	r=-0.52346	r=0.223768
15	1	t=2.45011*	t=2.2150*	t=4.3041**
6.	Total Nitrogen	r=-0.49174	r=-0.49174	r=-0.24403
		t=2.03618	t=2.03618	t=0.90729
7.	Organic Matter	r=-0.55975	r=-0.53796	r= 0.50662
		t=2.43550*	t=2.30096*	t=2.11866
8.	Available P (ppm)	r=-0.72520	r=-0.70542	r=0.15164
		t=3.79748**	t=3.58837**	t=0.55314
9.	Exchangeable Na	r=-0.22093	r=-0.22093	r=-0.1963
4		t=0.81675	t=0.81675	t=0.72181
10.	Exchangeable Ca	r=0.33209	r=-0.12977	r= -0.63904
		t=1.26941	t=0.47188	t=2.99554*
11.	Exchangeable K	r=-0.20954	r=0.901287	r=0.870646
		t=0.77266	t=0.04640	t=6.38156**
12.	Soluble Carbonate	r=-0.17223	r=0.501617	r=-0.92212
*		t=0.63040	t=2.09066	t=8.59312**

Table 4. Correlation coefficients 'r' and their calculated 't' values obtained between physico-chemical factors and microbial population of attached leaves amended cultivated soil.

* Significant at 5% level of significance

* Significant at 1% level of significance

round increase in pH values. In attached leaves amended cultivated soil the values of water holding capacity were 31.0% in (1%) soil and 43.21%, 53.82% in (2%) and 5% soil respectively. Exchangeable Na, K values increased with the increase of amendment. Similar condition was also seen in soluble carbonate content. After an incubation of 20 and 30 days increased values of soil temperature and water holding capacity was recorded with the increase in amendment. The total nitrogen percentage was slightly lesser than 10 days of attached leaves amended soil. Exchangeable Na, Ca and K values were lesser in comparison to 10 and 20 days of amendment.

The distribution of microbial count was surely affected by edaphic factors and for this detailed analyses of various physico-chemical characteristics of cultivated soil amended with *Eucalyptus* plant attached leaves (powdered) material was done. The correlation coefficients 'r' and their calculated 't' values were obtained between physico-chemical characteristics and microbial population in respective amendment (Table 4).

In case of attached leaves amended soils, no

significant correlation was observed between temperature and microbial population. Tresner *et al*¹⁹ and England and Rice²⁰ are of the opinion that temperature affects fungal counts/ population. Many workers^{521,22} are of the opinion that soil microorganisms are greatly influenced by differences in soil reaction (pH) and thrive in both acidic and alkaline soils. In present study significant correlation has been observed between microbial population and pH of the soil. Cobb²³, Eggleto²⁴ and Manoharachary²⁵ have failed to observe positive correlation with fungal, bacterial and actinomycetes numbers. Organic carbon displays significant correlation with fungal, bacterial and actinomycetes numbers.

The most significant correlation was established in *Eucalyptus* attached leaves amended soil and organic matter. Number of workers^{22,26,27} have observed positive effect of phosphorus on fungal numbers. Whereas inverse correlation with fungal population and available phosphorous has been established by Agarwal²⁸ and Ramarao²⁹. Present study also showed negative correlation with available phosphorous. Kadrekar and Kibe³⁰ observed

146

a relationship between soil texture and potassium content of the soil. Agrawal²⁸ established positive correlation between fungal population and exchangeable potassium in wasteland soil and no clear correlation in agriculture and forest land. In the present investigation also cultivated soil amended with attached leaves show no clear correlation. Ramakrishnan²⁷ also observed no positive correlation with fungi and exchangeable potassium content of the soil.

Acknowledgement

Our sincere thanks are due to Dr. Virendra Misra, Principal, B.S.A College and Dr. R.K. Jain, Head, Botany Dept., B.S.A. College, Mathura for providing laboratory facilities.

References

- Patrick Z A and Toussoun T A 1965, Plant residues and organic amendments in relation to biological control, In : *Ecology of Soil-borne Plant Pathogens*. K.F. Baker and W.C. Snyder (Eds.), pp. 440-457. University of California Press, Berkeley.
- 2. Huber D M and Watson R D 1970, Effect of organic amendment on soil-borne plant pathogens. *Phytopathology* 60 22 - 26.
- Kher A K 1981, Effect of fungicides and chemical fertilisers on soil micro-organisms. Ph.D. Thesis, University of Saugar, Sagar.
- 4. Thomas T 1982, Studies on the soil fungi of the Andman and Nicobar Islands. Ph. D. Thesis, University of Saugar, Sagar.
- Warcup J H 1951, The ecology of soil fungi. Trans. Brit. Mycol. Soc. 34 376 - 399.
- Martin J P 1950, Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69 215 - 232.
- 7. Piper C S 1966, Soil and Plant Analysis, Hans Publishers, Bombay.
- 8. Jackson M L 1973, Soil Chemical Analysis. Prentice-Half of India Pvt. Ltd; New Delhi.
- Kaufman D D and Williams L E 1964, Effect of mineral fertilization and soil reaction on soil fungi. *Phytopathology* 54 134-139.
- Shivappashetty K and Rangaswamy G 1968, Studies on the effect of heavy doses of phosphate fertiliser application on the soil and rhizosphere microflora of sunhemp (Crotalaria juncea L). Mysore J. Agric. Sci. 2 257-266.
- 11. Mishra R R 1971, Effect of certain chemical fertilisers of the rhizosphere mycoflora of *Oryza Sativa*. I. Nitrogenous fertilizers : ammonium nitrate and urea. *Mycopath. Mycol. Appl.* 44 167-176.
- 12. Balasubramanian A, Shautharam M V, Sardeshpande J S and Rangaswamy G 1972, Studies of certain micriobiological properties of the old permanent manurial plots at Coimbatore, Tamil nadu. Madras

Agric. J. 59 443-448.

- Kanaujia R S 1976, Observations on soil fungistasis.
 VI. Fungistasis of amended soils. *Bangladesh J. Bot.* 5 1-7.
- Pandeya J P N 1980, Studies in soil microbiology with special reference to litter decomposition. Ph.D. Thesis, University of Saugar, Sagar.
- Chakrabati S K and Sen Binita 1997, Suppression of Fusarium wilt of mustered melon by organic soil amendments. Indian Phytopath. 44(4) 476-479.
- Kurundkar B P and Jadhav P V 1993, Efficacy of some oil seed cakes and plant extracts in managing root knot of Okra. *Indian Phytopath.* 46(3) 254-255.
- Chaudhary S and Mandal D N 1994, Effect of chitin amendment on soil microflora in relation to chitinase activity and its effect on survival of *Fusarium* moniliforme. Indian Phytopath. 47(i) 77-80.
- Raj Harender and Kapoor I J 1996, Effect of oil cakes amendments of soil on tomato wilt caused by *Fusarium* oxysporum F. sp. Lycopersici. Indian Phytopath. 49(4) 355 - 361.
- Tresner H D, Backus M P and Curtis J T 1954, Soil microfungi in relation to hard wood forest continuum in southern Wisconsin. *Mycologia* 46 314 - 333.
- England C M and Rice J T 1957, A comparision of the soil fungi of a tall grass praire and of an abandoned field in central oplahoma. *Bot. Gaz.* 118 186 - 190.
- Waksman S A 1922, Microbiological analysis of soil as an index of soil fertility, III. Influence of fertilisation upon numbers of micro-organisms in the soil. *Soil Sci.* 14 321 - 346.
- Saksena S B 1955, Ecological factors governing distribution of soil microfungi in some forest soils of Sagar. J. Indian bot. Soc. 34 262 - 298.
- Cobb M J 1932, A quantitative study of the microorganic population of a hemlock and deciduous forest soil. Soil Sci. 37 325 - 345.
- Eggleton W G E 1938, The influence of environmental factors on number of soil microorganisms. *Soil Sci.* 46 351-363.
- Manoharachary C 1977, Microbial ecology of Scrub jungle and dry waste land soils from Hyderabad district, A.P. (India). *Proc. Indian Natn. Sci. Acad.* B 436-18.
- Waksman S A and Starkey R R 1924, Influence of soil organic matter upon the development of fungi, bacteria and actinomycetes. *Soil Sci.* 17 373 - 378.
- 27. Ramakrishnana K 1955, Some aspect of soil fungal ecology. Proc. Indian Acad. Sci. B 41 110-114.
- Agarwal A K 1983, Ecological studies on soil fungi with special reference to fungistasis and biological control. Ph.D. Thesis, Jiwaji University, Gwalior.

29. Ramarao P 1970, Studies on soil fungi. Seasonal variation and distribution of microfungi in some soils of Andhra Pradesh (India). Mycopath. Mycol. Appl. 40 277-298.

al support of the opening support of

 Kadrekar S B and M M Kibe 1972, Soil potassium forms in relation to agroclimatic conditions in Maharashtra. J. Indian Soc. Soil Sci. 20 231-241.

stead included of the Victoria National

chi bos • sidin hou nomine - prosiline - suo esere V

Ref Elements and Kapper 1 1990. Effect of pil cales Sug England-C M and Rece 1 1957, A comparizon of the oug and matter upon the development of Junior, Enclosed and actinomycoles, TAR Sec. 17 373 - 378