

J. Phytol. Res. 29 (1 & 2): 55-71, 2016

FLORAL DIVERSITY OF THAR DESERT OF WESTERN RAJASTHAN, INDIA

P.D. CHARAN^{1*} and K.C. SHARMA²

Department of Environmental Science, Maharaja Ganga Singh University, Bikaner-334004 Department of Environmental Science, Central University of Rajasthan, Ajmer-305802 * Corresponding author : E-mail: prabhuenviro@gmail.com

Thar desert is one of the ecosystem possessing highest biodiversity among the desert ecosystems of the world. The floristic survey of Thar desert was carried out during 2013-2015. A total of 62 families, 157 genera and 206species were documented from the area. Three most dominant families of plants in the study area were Fabaceae (29species), followed by Poaceae (26 species) and Asteraceae (15 species. The habit wise analysis of the results depicted that herbaceous vegetation (60.10%) were highest prevailing vegetation in Thar dessert followed by shrubs (16.26%), trees (14.29%) and climber (9.36%). The results of the study will be helpful for conservation and sustainable utilization and management of the plant resources of the Thar desert of the western Rajasthan.

Keywords: Floral diversity; floristic survey; Thar desert.

Introduction

Deserts are natural ecosystems characterized by very scanty rainfall (less than 60cm), high evapo-transpiration rate, aridity and very meagre presence of vegetation. The western Rajasthan possesses sandy warm desert known as Great Indian Thar desert. It extends into the southern portion of Haryana and Punjab and into northern part of Gujarat state. The total area of the Thar desert is about 2,00,000 km², spread in western part of Indian sub-continent between 24° to 28° N latitude and 68° to 71° E longitude¹. It is the ninth largest desert of the world, but it has very fair biodiversity status. The average population density in Thar desert is 83 persons/km, while in other deserts of the world, the population density is just 7 persons/km.² In India, more than 60% of geographical area of the Thar Desert lies in

grassland intermingled with trees and thorny bushes. One of the important geological features of the Thar desert is the presence of some ephemeral rivers including Luni, Sookdi, Ghagghar, Bandi and Jojri river, which plays an important role on microclimatic conditions of the regions through which they traverse and hence, they affect the vegetation of these regions of the Thar desert⁵. According to report of the task force on grasslands and deserts (2006), the total protected area network in the Thar region is about 7.45% of total geographical area the desert. There is only one national park and five wildlife sanctuaries in Thar desert which comprises about 16076 km 2 area⁶. It

the Rajasthan state³. The Thar Desert has a

very rich floral diversity including about 628

species, 352 genera and 87 families⁴. It

mainly occupied by dry grassland or by

was observed that due to arrival of Indira Gandhi Canal Project (IGCP) in western Rajasthan, the desert ecosystem has been remarkably affected by changing the crop pattern. traditional grazing regime. introduction of alien species etc^7 . The canal project has influenced immigration of new people from different part of India, who do not have the conservation value system which the inhabitants of the Thar desert had⁸. The IGNP has accelerated the overexploitation of Thar desert for agricultural activities, which simultaneously enhanced the cattle population in the region. The population of dairy animals like buffalos, goats and other ruminants has increased in the Thar region. The grazing pressure on the rangeland vegetation is estimated to 3.2 ACU/Ha as compared to the carrying capacity (0.3 to 0.5 ACU/Ha), which leads to declination of floral diversity⁹. The result

of such activities has almost degraded the natural fields of Lasiurus sindicus grass, which was dominated grass of the Thar region. It is therefore, the need of the time to conserve natural resources of the desert ecosystem. Many workers have done a remarkable work on the floral diversity of the Thar desert^{4,10-15}. Vegetation diversity plays a vital role in maintaining ecological balance in any natural ecosystem. Therefore, ecological studies and systemic floristic inventory must be carried out on regular interval to assess changes in diversity due to natural as well as anthropogenic factors 16 . Keeping in view of the importance of ecological study to considerate the mutual relationship between nature and the information inhabitants. on floral diversity was collected in relation to different habitats of the Thar desert of Rajasthan (Fig.1).

Fig.1. Expansion of the Thar desert in Rajasthan¹⁷

Climate of Thar desert

The climate of Thar desert is arid which is characterized by low and erratic rainfall, frequent drought, extremes of diurnal and annual temperatures, high wind velocity and low humidity. During summer (March to June), the maximum temperature generally varies between 45° C and 50° C, while temperatures in winters (November-February) ranges between $15^{\circ} - 25^{\circ}$ C. More

than 88% of total annual rainfall (which is less than 25cm) of Thar desert is received during Monsoon season (July to October)¹⁸. Since last fifty years, the climatic regime has adversely affected, especially due to anthropogenic causes, at local as well as global level. A report of the Inter-Governmental Panel on Climate Change has projected hotter days and warm nights and a reduction in rainfall in That region by 21^{st} century¹⁹. It is reported that consequences the of climate change may be very adverse for the biological diversity of the Thar desert²⁰.

Edaphology of Thar desert of Rajasthan

Edaphology is concerned with the influence of soils on living things, particularly vegetation. The soil of the Thar desert is characterized by poor soil fertility. It is dominantly sandy with 60-90% fine sand and 2-10% of silt-clay in the topsoil.⁹ and it has very less organic matter. The Thar desert is characterised by semi-stabilized to frequently sifting sand dunes. The soil of the Thar desert has low to medium available phosphorus and medium to high available potassium⁹. The average pH of soil of the desert ranges from 7.6 to 8.5^{21} . Salinity and sodicity of the soil in some areas of the desert is higher, which is mostly confined to areas with depressions or 'Playa' (Fig. 2).

Fig. 2. Land spoiled by salt deposition near Badopal playa, Hanumangarh

Results and Discussion

The floristic survey of Thar desert carried during 2013-2015. was out A total of 62 families, 157 genera and 206 species were documented from the area. Among the existing families, Fabacea is the largest family with 29 species followed by Poaceae (26 species) and Asteraceae (15 species), Amaranthaceae (10 species), Cucurbitaceae (9 species), Convolvulaceae (6 species), Boraginaceae, Euhorbiaceae and Lamiaceae (5 species each), Acanthaceae, Brassicaceae, Zygophyllaceae Capparaceae, and (4 species each), Solanaceae, Apocynaceae,

Asclepiadaceae, Menispermaceae, Tiliaceae Malvaceae and Chenopodiaceae (3 species each). Aizoaceae, Casalpinaceae, Cleomaceae, Cyperaceae, Hydrocharitaceae, Moraceae, Nymphaceae, Molluginaceae, Pedaliaceae, Plntaginaceae, Rhamnaceae, Salvedoraceae and Tamaricaceae (2 species while rest of 29 families each). are represented with one species. The habit (Fig. 2) of the study wise analysis that herbaceous vegetation shows (60.10%) were highest prevailing vegetation followed in Thar desert by shrubs trees (14.29%) and climber (16.26%).(9.36%).

Charan & Sharma

Fig. 2. Habit-wise comparison of vegetation of Thar desert of Rajasthan

The results of the present investigation is fairly supported by earlier studies carried out on floral diversity of the Thar desert^{22,23}. A

detail of common flora of the Thar desert of western Rajasthan and their status has inventoried in Table-1.

Table-1: Common fl	lora of the Thar	desert of western	Rajasthan
--------------------	------------------	-------------------	-----------

S. No.	Plant Species	Family	Local name	Habit	IUCN status*
1.	Abutilon indicum	Malvaceae	Kanghi	Herb	NE
2.	Acacia jacquemontii	Fabaceae	Bu-banwali	Shrub	NE
3.	Acacia leucophloea	Fabaceae	Urajio	Tree	NE
4.	Acacia nilotica	Mimosaceae	Banwal	Tree	NE
	Acacia nilotica subsp.		Kikar, Ramkanta,		NE
5.	Cupressiformis	Fabaceae	Ramkati Babul	Tree	
6.	Acacia senegal	Fabaceae	Kumta, Kumatia	Tree	NE
	-		Muktajhuri, Kokli,		NE
7.	Acalypha indica	Euphorbiaceae	Kuppi	Herb	
			Modo kanto,	Herb	NE
			Adhijhara,Katio		
8.	Achyranthes aspera	Amaranthaceae	bhuratio		
9.	Acrachne racemosa	Poaceae	Chinki	Herb	NE
10.	Aerva lanata	Amaranthaceae	Chhoti Bui	Herb	NE
11.	Aerva persica	Amaranthaceae	Safed Bui, Buari	Herb	NE
12.	Aerva pseudotomentosa	Amaranthaceae	Bui	Herb	NE
13.	Ageratum conyzoides	Asteraceae	Visadodi	Herb	VU
14.	Ailanthus excelsa	Simaroubaceae	Adusa	Tree	NE
15.	Albizia lebbeck	Fabaceae	Sares	Tree	NE
16.	Aloe vera	Liliaceae	Patha	Herb	NE
17.	Amaranthus viridis	Amaranthaceae	Chaulie	Herb	NE
18.	Anisomeles indica	Lamiaceae	Ghabro	Herb	NE
19.	Anogeissus pendula	Combretaceae	Dhokda, Dhawada	Tree	NE
20.	Argemone mexicana	Papaveraceae	Satyanashi	Herb	NE
21.	Argyreia nervosa	Convolvulaceae	Ghav bel	Climber	NE
22.	Aristida adscensionis	Poaceae	Lampro	Herb	NE
23.	Aristida funiculata	Poaceae	Lamp	Herb	NE
24.	Arnebia hispidissima	Boraginaceae	Rambus	Herb	NE

S. No.	Plant Species	Family	Local name	Habit	IUCN status*
25.	Asparagus racemosus	Asparagaceae	Satawari	Climber	NE
26.	Atylosia platycarpa	Fabaceae	Sukli Sengha	Herb	NE
27.	Azadirachta indica	Meliaceae	Neem	Tree	NE
28.	Bacopa monnieri	Plantaginaceae	Brahmi	Herb	LC
29.	Balanites aegyptica	Zygophyllaceae	Hingota	Tree	NE
30.	Barleria prionitis	Acanthaceae	Bajradanti	Herb	NE
31.	Bauhinia racemosa	Fabaceae	Asundro	Tree	NE
32.	Blepharis repens	Acanthaceae	Bhangari	Herb	NE
33.	Boerhavia diffusa	Nyctaginaceae	Santhi, Punarnava	Herb	NE
34.	Borreria articularis	Rubiaceae	Poi, Safed bachla	Herb	NE
35.	Brachiaria ramosa	Poaceae	Murat	Herb	LC
36.	Butea monosperma	Fabaceae	Dhak	Tree	NE
37.	Cadaba fruticosa	Capparaceae	Dabi	Shrub	NE
38.	Calligonum polygonoides	Polygonaceae	Phog	Shrub	NE
39.	Calotropis procera	Asclepiadaceae	Aak, aakda	Shrub	NE
40.	Capparis decidua	Capparaceae	Ker	Shrub	NE
41.	Cassia auriculata	Caesalpinaceae	Anwal	Shrub	NE
42.	Cassia fistula	Fabaceae	Amaltas	Tree	NE
43.			Bhinda Anwal,		NE
	Cassia italica	Fabaceae	Sonela	Herb	
44.	Cassia occidentalis	Fabaceae	Kesudo	Herb	NE
45.	Cassia siamea	Fabaceae	Kasod	Tree	NE
46.	Cassia tora	Caesalpinaceae	Phunwad	Herb	NE
47.	Celosia argentea	Amaranthaceae	Garkha, Imarti	Herb	NE
48.	Cenchrus biflorus	Poaceae	Bhurat	Herb	NE
49.	Cenchrus ciliaris	Poaceae	Dhaman	Herb	NE
50.	Cenchrus prieurii	Poaceae	Lambio-bhurat	Herb	NE
51.	Cenchrus setigerus	Poaceae	Bhurtio	Herb	NE
52.	Chenopodium album	Amaranthaceae	Chilaro	Herb	NE
53.	Chenopodium album	Chenopodiaceae	Bathua	Herb	NE
54.	Cistanche tubulosa	Orobanchaceae	Lonki ro mut	Herb	NE
55.	Citrullus colocynthis	Cucurbitaceae	Tumba	Climber	NE
56.	Citrullus fistulosus	Cucurbitaceae	Tindsi	Climber	NE
57.	Citrullus lanatus	Cucurbitaceae	Matiro	Climber	NE
58.	Cleome gynandra	Cleomaceae	Bagra	Herb	NE
59.	Cleome viscosa	Cleomaceae	Hulhul, Bagro	Herb	NE
60.	Clerodendrum phlomidis	Lamiaceae	Arni, Arno	Shrub	NE
61.	Coccinia grandis	Cucurbitaceae	Golan, Gol	Climber	NE
62.	Cocculus hirsutus	Menispermaceae	Bajar bel	Climber	NE
63.	Cocculus pendulus	Menispermaceae	Pilwan	Climber	NE
64.	Commelina benghalensis	Commelinaceae	Bakhana	Herb	LC
65.	Commiphora wightii	Burseraceae	Guggal	Shrub	DD

Charan & Sharma

S. No.	Plant Species	Family	Local name	Habit	IUCN status*
			Hiranpagi,		NE
66.	Convolvulus deserti	Convolvulaceae	Shankhpushpi	Herb	
	~		Bahuphali, Cham-		NE
67.	Corchorus depressus	Tiliaceae	ghas	Herb	
68.	Corchorus trilocularis	Tiliaceae	Hade-ka-khet	Herb	NE
69.	Cordia dichotoma	Ehretiaceae	Goonda	Shrub	NE
70.	Cordia gharaf	Boraginaceae	Gundi	Shrub	NE
71.	Coronopus didymus	Brassicaceae	Pitpapra	Herb	NE
72.	Cressa cretica	Convolvulaceae	Rudanti	Herb	LC
73.	Crotalaria burhia	Fabaceae	Sanio, Jhunda, Chag	Herb	NE
74.	Crotalaria medicaginea	Fabaceae	Gungario	Herb	NE
75.	Cucumis callosus	Cucurbitaceae	Kachri	Climber	NE
	Cucumis melo var.				NE
76.	agrestis	Cucurbitaceae	Khaakhdi, Chibbadi	Climber	
77	Cusumia mala yan Cultur	Cuaurhitaaaaa	Kachro, Chibdi,	Climbon	NE
70	Cucumis melo var. Cullus	Cucurbitaceae	Kilakilui Vhad Vaahar	Climber	NE
/8.	Cucumis prophetarum	Cucurbitaceae	Knad-Kachar	Climber	INE NE
/9.	Cuscuta reflexa	Cuscutaceae	Amar-bei	Limber	INE NE
80.	Cyamopsis tetragonoloba	Poaceae	Gwar	Herb	NE
81	Cymbopogon jawarancusa	Розсезе	Buraro	Herh	INE
82	Cynodon daetylon	Poaceae	dubdi dhob	Herb	NE
83	Cynodon dderyion Cynorus bulbosus	Cyperaceae	Moth Motho	Herb	
05.	Cyperus buibosus	Cyperaceae	motha Mandusi	neit	
84.	Cyperus rotundus	Cyperaceae	Chhab	Herb	Le
	Dactyloctenium				NE
85.	aegyptium	Poaceae	Makaro, Manchi	Herb	
86.	Dactyloctenium sindicum	Poaceae	Tantia, ganthio	Herb	NE
87.	Dalbergia sissoo	Fabaceae	Shisham, Tali	Tree	NE
88.	Datura stramonium	Solanaceae	Dhaturo	Shrub	NE
89.	Delonix regia	Fabaceae	Gulmohar	Tree	VU
90.	Dichanthium annulatum	Poaceae	Karad	Herb	NE
91.	Dichrostachys cinerea	Fabaceae	Kolai	Shrub	LC
92.	Dicoma tomentosa	Asteraceae	Kantelo, Kantio	Herb	NE
93.	Digera muricata	Amaranthaceae	Lolaru	Herb	NE
94.	Digitaria bicornis	Poaceae	Jheranio	Herb	NE
95.	Dipterygium glaucum	Capparaceae	Moto chag	shrub	NE
96.	Echinops echinatus	Asteraceae	Unt-kanto	Shrub	NE
97.	Eclipta alba	Asteraceae	Jal Bhangro	Herb	NE
98.	Enicostemma axillare	Gentianaceae	Naame	Herb	NE
99.	Eragrostis ciliaris	Poaceae	Lutio-lamp	Herb	NE
100.	Eragrostis minor	Poaceae	Poongyo	Herb	NE
101.	Eragrostis tremula	Poaceae	Chuvalio	Herb	NE
102.	Eruca vesicaria	Brassicaceae	Tara-meera	Herb	NE
103.	Eucalyptus camaldulensis	Myrtaceae	Safeda	Tree	NE
104.	Euphorbia caducifolia	Euphorbiaceae	Danda thor	Shrub	NE
105.	Euphorbia granulata	Euphorbiaceae	Dudheli	Herb	NE

S. No.	Plant Species	Family	Local name	Habit	IUCN status*
106.	Euphorbia hirta	Euphorbiaceae	Dudhi	Herb	NE
107.	Evolvulus alsinoides	Convolvulaceae	Phooli	Herb	NE
108.	Fagonia cretica	Zygophyllaceae	Dhamaso	Herb	NE
109.	Farsetia hemiltonii	Brassicaceae	Hiran chabbo	Herb	NE
110.	Ficus bengalensis	Moraceae	Bar, Barlo	Tree	NE
111.	Ficus religiosa	Moraceae	Pipal	Tree	NE
112.	Gisekia pharnaceoides	Gisekiaceae	Morang, Sareli	Herb	NE
113.	Glinus lotoides	Molluginaceae	Jima, Bakada	Herb	NE
114.	Glossonema varians	Apocynaceae	kheerdi, Dodha	Herb	NE
115.	Grewia tenax	Tiliaceae	Gangan	Shrub	NE
116.	Haloxylon salicornicum	Chenopodiaceae	Khar, Lana	Herb	NE
117.	Heliotropium crispum	Boraginaceae	Kali bui	Herb	NE
118.	Heliotropium subulatum	Boraginaceae	Kali bui, Kharchan	Herb	NE
119.	Holoptelea integrifolia	Ulmaceae	Bandar Bati	Tree	NE
120.	Hydrilla verticillata	Hydrocharitaceae	Jhangi, Kureli	Herb	LC
121.	Indigofera cordifolia	Fabaceae	Bekar	Herb	NE
122.	Indigofera linifolia	Fabaceae	Lambio-bekario	Herb	LC
123.	Indigofera linnaei	Fabaceae	Bekario	Herb	NE
124.	Indigofera oblongifolia	Fabaceae	Goilia	Herb	LC
125.	Ipomoea eriocarpa	Convolvulaceae	Rota belari	Climber	NE
126.	Ipomoea pes-tigridis	Convolvulaceae	Panchpatia bel	Climber	NE
127.	Justicia simplex	Acanthaceae	Gungi-bunti	Herb	NE
128.	Lantana Camara	Verbenaceae	Raimunia	Shrub	NE
129.	Lasiurus scindicus	Poaceae	Sewan	Herb	NE
130.	Launea nudicaulis	Asteraceae	Van gobhi	Herb	NE
131.	Launea procumbens	Asteraceae	Janlee gobhi	Herb	NE
132.	Lawsonia inermis	Lythraceae	Mehandi	Shrub	NE
133.	Lepidaghathis trinervis	Acanthaceae	Aewal kangio	Herb	NE
134.	Lepidium sativum	Brassicaceae	Asaliyo	Herb	NE
135.	Leptadenia pyrotechnica	Asclepiadaceae	Kheemp	Shrub	NE
136.	Leucas aspera	Lamiaceae	Dargal	Herb	NE
137.	Maerua oblongifolia	Capparaceae	Orapa	Climber	NE
138.	Martynia annua	Martyniaceae	Bagh-nakkhi	Shrub	NE
139.	Maytenus emarginatus	Celastraceae	Kankero	Shrub	NE
140.	Melia azedarach	Meliaceae	Bakayan	Tree	NE
141.	Melilotus indica	Fabaceae	Marvo	Herb	NE
142.	Mollugo cerviana	Molluginaceae	Chiria-ro-khet	Herb	NE
143.	Moringa oleifera	Moringaceae	Sanjano	Tree	NE
144.	Mukia maderaspatana	Cucurbitaceae	Ank phutani bel	Climber	NE
145.	Nelumbo nucifera	Nymphaceae	Kamal	Herb	NE
146.	Nymphaea pubescens	Nymphaceae	Be	Herb	NE
147.	Ochthochloa compressa	Poaceae	Ghora dhob	Herb	NE
148.	Ocimum americanum	Lamiaceae	Bapchi, Shyam tulsi	Shrub	NE
149.	Ocimum sanctum	Lamiaceae	Ram tulsi	Shrub	NE
150.	Oligochaeta ramosa	Asteraceae	Unt-kantilo	Herb	NE
151.	Opuntia elatior	Cactaceae	Nagfani	Shrub	LC

S. No.	Plant Species	Family	Local name	Habit	IUCN status*
152.	Oropetium thomaeum	Poaceae	Surshia	Herb	NE
153.	Panicum antidotale	Poaceae	Garmano	Herb	NE
154.	Parkinsonia microphylla	Fabaceae	Rambabool	Tree	NE
	Parthenium		Gajar ghas,		NE
155.	hysterophorus	Asteraceae	Congress Ghas	Herb	
156.	Pavonia odorata	Malvaceae	Chiriki Nahl	Herb	NE
157.	Pedalium murex	Pedaliaceae	Bada Gokharu	Herb	NE
158.	Pergularia daemia	Apocynaceae	Akadi	Climber	NE
			Lonki-puncho, billi		NE
159.	Perotis indica	Poaceae	ki ankh	Herb	
160.	Physalis minima	Solanaceae	Chirphoti	Herb	NE
1.61		F 1	jangal jalebi, Pardesi	T	NE
161.	Pithecellobium dulce	Fabaceae	amli	I ree	NIE
162.	Plantago ovata	Plantaginaceae	Isabgol	Herb	NE
163.	Polygala erioptera	Polygalaceae	Boyasan	Herb	NE
164.	Portulaca oleracea	Portulacaceae	Luni	Herb	NE
165.	Prosopis cineraria	Fabaceae	Khejari	Tree	NE
166.	Prosopis juliflora	Fabaceae	Angreji bawal	Shrub	NE
167.	Pulicaria arabica	Asteraceae	Soneli	Herb	NE
168.	Pulicaria crispa	Asteraceae	Dhola lizru, Soneli	Herb	NE
169.	Pupalia lappacea	Amaranthaceae	Undio bhurat	Herb	NE
170.	Rhus mysurensis	Anacardiaceae	Dansara	Shrub	NE
171.	Ricinus communis	Euphorbiaceae	Arandi, Arand	Shrub	NE
172.	Saccharum spontaneum	Poaceae	Dharbi-ghas	Herb	LC
173.	Salsola baryosma	Chenopodiaceae	Lani	Shrub	NE
174.	Salvadora oleoides	Salvadoraceae	Meethi jaal	Tree	NE
175.	Salvadora persica	Salvadoraceae	Khari jaal	Tree	NE
176.	Sarcostemma acidum	Asclepiadaceae	Art Thor	Shrub	NE
177.	Sesamum indicum	Pedaliacae	Til	Herb	NE
178.	Sesuvium sesuvioides	Aizoaceae	Lunio	Herb	NE
179.	Sida cordata	Malvaceae	Adio bal	Herb	NE
180.	Solanum surattense	Solanaceae	Adkuntali	Herb	NE
181.	Sonchus oleraceus	Asteraceae	aakadio	Herb	NE
182.	Sporobolus diander	Poaceae	Undar-puncho	Herb	NE
183.	Suaeda fruticosa	Amaranthaceae	Lunaki	Herb	NE
184.	Tamarix aphylla	Tamaricaceae	Farash	Tree	NE
185.	Tamarix dioica	Tamaricaceae	Lai, Arseli	Shrub	NE
186.	Tecomella undulata	Bignoniaceae	Rohida	Tree	NE
		<u> </u>	Bhaker biyani,		NE
187.	Tephrosia purpuria	Fabaceae	Bisoni, Sarpankho	Herb	
188.	Tinospora cordifolia	Menispermaceae	Giloy	Climber	NE
189.	Tragus biflorus	Poaceae	Charchara	Herb	NE
	Trianthema				NE
190.	portulacastrum	Aizoaceae	Sato, hato	Herb	
191.	Tribulus terrestris	Zygophyllaceae	Kanti, Chota Gokhru	Herb	NE
	Trichodesma			_	NE
192.	amplexicaule	Boraginaceae	Sial kanto	Herb	

S. No.	Plant Species	Family	Local name	Habit	IUCN status*
193.	Tridax procumbens	Asteraceae	Larde olapsi	Herb	NE
	Trigonella foenum-				NE
194.	graecum	Fabaceae	Methi	Herb	
			ero ghas, Pann,		NE
195.	Typha angustata	Typhaceae	Patera	Herb	
196.	Vallisneria spiralis	Hydrocharitaceae	Sewal	Herb	LC
197.	Verbesina encelioides	Asteraceae	Jungli surajmukhi	Herb	NE
198.	Vernonia cinerea	Asteraceae	Sahdevi	Herb	NE
199.	Vigna trilobata	Fabaceae	Janlee moth	Herb	NE
200.	Viola cinerea	Violaceae	Khokali, Khokla	Herb	NE
201.	Withania somnifera	Solanaceae	Ashwagandha	Herb	NE
202.	Wrightia tinctoria	Apocynaceae	Bhakar aak	Tree	LR/LC
203.	Xanthium strumarium	Asteraceae	Chhota dhatura	Shrub	NE
204.	Ziziphus mauritiana	Rhamnaceae	Beri, bordi	Shrub	NE
205.	Ziziphus nummularia	Rhamnaceae	Jhad-beri, bordi	Shrub	NE
206.	Zygophyllum simplex	Zygophyllaceae	Lonk, Lunwo	Herb	NE

Floral diversity and structure of plant Community of the Thar region

The Thar desert have arid climate, therefore, the vegetation of the region is adapted to xerophytic conditions²⁴. The Thar desert has a specific characteristics with a variety of environmental stresses including low precipitation, high temperature, extreme aridity, low availability of nutrients and high evapo-transpiration rate²⁵. The vegetation of the region are adapted to these edaphoclimatic extremities, which helps the plants to grow and sustained in the adverse xerphytic conditions 26 . It is reported that the Thar desert represents only 5% of the flora of India, which has about 17,500 flowering plants²⁷. It is reported that most of the plants

of the Thar desert are having different medicinal properties and therefore, they are being used by tribes for curing their ailments^{28,29}. The isohyets map of Rajasthan shows that the eastern part of the desert receives high rainfall (up to 400 mm) as compared to western part (about 100 mm) and hence, vegetation cover is comparatively dense in eastern part³⁰.

Halophytic vegetation

The Thar desert has many depressions or '*Playa*', where salinity is very high. About 7,20,000 ha area of the desert is saline and is used for production of table salt³¹. Some vegetation is adapted to grow in such saline area (Fig.3).

Fig. 3. Saline water at Loonkaransar, Bikaner

The most common halophytes of the Thar desert are Tamarix aphylla, Tamarix triauetra. dioica. Trianthema Cressa Portulaca oleracea, Portulaca cretica. meridiana, Haloxylon recurvum, Haloxylon salicornicum, Suaeda fruticosa, Sesuvium Salsola baryosma, sesuvioides. Zaleya redimita. Zygophyllum and simplex.³²⁻³⁴

Vegetation on sand dunes

The desert of Rajasthan is characterized by semi-stable to frequently shifting sand dunes. Therefore, the vegetation cover on such dunes is very low. The average height of these sand dunes varies between 70-120 m.

Fig. 4. *Aerva persica* and *Tephrosia purpurea* dominated sand dune near Artwav village, Jalore

Vegetation of interdunal flats

Interdunal flats of the desert holds hard and compacted surfaces as compared to sand dunes (Fig.6 and Fig.7). These flats retain the rainwater for longer time than sanddunes. The dominant vegetation of such flats are Aristida funiculata, Arnebia hispidisima, Aerva javanica, Aerva persica, Aerva Convolvulus pseudotomentosa, deserti. Crotalaria decidua, burhia, Cappais *Calotropis* procera, Cymbopogon jawarncusa, Dactyloctenium sindicum. Eragrostis Eragrostis ciliaris, minor.

It is reported that about 44% area of the That desert is occupied by sand dunes 35 . Ephemeral vegetation can be observed here during rainy season (Fig. 4 & 5). Some common vegetation on sand dunes of Thar desert including Aerva persica, Aerva pseudotomentosa, Aerva javanica, Acacia jacqumontii, Boerhavia diffusa, Calligonum polygonoides, Cenchrus setigerus, Cenchrus Crotalaria ciliaris. burhia, Cyperus rotundus, Gisekia pharnaceoides, Mollugo Lasiurus sindicus, Panicum cerviana, Pedalium murex. Tephrosia turgidum, purpurea can be observed during Monsoon period^{13,15,36}

Fig. 5. *Crotalaria burhia* dominated sand dune near Gudamalani, Barmer

Eragrostis pilosa, Evolvulus alsinoides, Fagonia Farsetia cretica. hamiltonii. Heliotropium bacciferum, Indigofera cordifolia, Indigofera linnaei, Leptedenia pyrotechnica, Octhocloa compressa, Pulicaria crispa, Tribulus terrestris, Tephrosia purpurea, Zizyphus nummularia^{13,37}. The dominant tree of the Thar is Prosopis cineraria. However, in some areas of the desert, other tree flora including Salvedora oleoides, Salvedora persica, Zizyphus mauritiana, Tecomella undulata, Balanites aegyptiaca, Acacia

senegal, Acacia nilotica, Acacia tortilis etc are in co-existence with Prosopis cineraea¹³⁻¹⁵. Some climbers including Asparagus racemosus, Citrullus colocynthis, Cucumis

Fig. 6. A view of inter-dunal flat near Rama village, Jaisalmer

Aquatic vegetation

The Thar desert is very poor in water resources. Permanent water bodies are rare in the Thar desert. Indira Gandhi Canal Project (IGCP) is the major water supply system for both agricultural and drinking water purpose in most of the districts of the desert part of the Rajasthan (Fig. 8). Recently, the Narmada Canal Project has extended to meet the need of water in some parts of Jalore and Barmer districts. Some rivers in Thar desert of Rajasthan are also prevailing, which has very limited flow during Monsoon period and they remain dry for most of the time of the year. Some lakes including Kaylana (Jodhpur) (Fig. 9). Kolayat and Gajner (Bikaner), Gadisar (Jaisalmer) are possessing water throughout the year and hence some weeds and aquatic vegetation in the region can be observed. The common aquatic vegetation noticed in the water bodies including canals, major lakes and pond of Thar desert are callosus, Cucumis profetarum, Ipomoea pestigridis, Ipomoea eriocarpa Mukia maderaspatana and Pergularia daemia can be observed in the Thar desert⁵.

Fig.7. Zizyphus nummualria and Octhocloa compressa dominant flat near Nal village, Bikaner

Ceratophyllum demersum, Hydrilla verticillata, Ipomea aquatic, Eichornia crassipes, Lemna minor, Nelumbo nucifera, Nymphaea nauchii, Pistia stratiotes, Potamogeton crispus, Spirodela polyrhiza, anguistata Typha and Vallisneria *Americana*^{38,39}. It was observed that Kolayat lake of Bikaner is dominated by Nelumbo nucifera, while IGNP canal and its minor branches are having Typha anguistata near banks of the canal. It was also noticed that near banks of almost all the water bodies of the Thar was dominated by Cynodon dactylon grass.

Vegetation on hillocks of the Thar desert

The eastern border of the Thar desert of Rajasthan touches the Aravalli range. It is noticed that the desert has some discontinued hillocks and small hills near Jodhpur (Fig.10), Sewana (Jalore), Chohtan and Kiradu (Fig.11) (Barmer). The important vegetation noticed on these hills are *Acacia senegal, Euphorbia caducifolia,*

Grewia tenax, Barleria prionites, Brachiaria ramose, Commiphora wightii, Aristida funiculata. Asparagus recemosus. Lapidagathis trinervis, **Melanocenchris** jacquemontii, Pupalia lappacea, Tragus

Fig. 8. A view of Indira Gandhi Canal, Hanumangarh

biflorus, Maytenus emarginata, Dicoma tomentosa, Crotalaria medicagenia, Euphorbia Bidens biternata. hirta. Tetrapogon Cymbopogon tenellus, jwarancusa etc⁴⁰.

Fig. 9. Aquatic vegetation in Kaylana lake, Jodhpur

Fig. 10. Vegetation at hills near Mandor, Fig. 11. A view of Kiradu hills near Barmer Jodhpur

Vegetation of Magras

Magras are hard landscape with gravel and stony surface (Fig.12 and Fig.13). These surfaces are so stiff that roots of most of the plants do not easily penetrate it. Therefore the vegetation covers on such surfaces are scanty. However, trenches made from runoff during Monsoon period creates the substratum favourable for some grasses and herb including Sporobolus diander. **Oropetium** Crotalaria thomaeum.

medicagenia, Eragostis minor, Eragrostis pilosa, Evolvulus alsinoides, Fagonia cretica, Farsetia hamiltonii, Heliotropium cordifolia, bacciferum, Indigofera Octhacloa compressa, Corchorus depressus, Lapidagathis trinervis, Tragus biflorus etc⁴¹. Invasive alien flora of Thar desert

Due to improved irrigation facilities and canal irrigation in the western Rajasthan, many alien vegetation have invaded in the region. It is reported that biological invasion

Fig. 12. A view of *Magra* vegetation at Tembda Village, Jaisalmer

of alien species is the second worst threat after habitat destruction, which is responsible for the loss of native species⁴². These invasive species have wider range of ecological amplitude. Hence, once they invade in the region, they consistently reproduce and sustain populations over many generations without direct interference by humans^{43,44}. The native flora of the Thar desert of western Rajasthan is facing a severe threat from such invasive alien flora.

Prosopis chilensis is the most abundant alien species, which is rapidly spreading in the region and is highly adopted to survive almost in any condition 45 . The common invasive flora reported from the Thar desert are Prosopis chilensis, Acanthospermum hispidum, Ageratum Alternanthera convzoides. pungens, Argemone Mexicana, Calotropis gigantea, Calotropis procera, Cassia obtusifolia, Cassia occidentalis, Cassia tora, Chloris barbata, Cleome viscosa, *Echinops* echinatus, Ipomoea eriocarpa, Ipomoea pestigridis, Lantana camara. Parthenium hysterophorus, Prosopis juliflora / Prosopis Solanum surattense, Typha chilensis. angustata and Xanthium strumarium⁴⁶.

Biological reasons of loss of important flora from desert

Fig. 13. *Magra* vegetation near Baap-Malar, Jodhpur

The Thar desert is one of the most fragile desert biome of the world. Beside anthropogenic activities, there are many natural causes which are responsible for loss of biological diversity. Due to immense biotic interference, about 31 species of total 84 economically important species have become either vulnerable or endangered⁴⁷. Infestation by insects on flowers, fruits and seeds may causes deformities in them and anomalous physiological changes in the plants themselves^{48,49}. It is reported that about 17 species and 8 botanical varieties are endemic to the Indian Thar Desert³¹.

Some biological indiscretions in such plants are responsible for their reduced distribution. The major biological indiscretions including genetic variation and skimpy seed production may results in crisis in seed germination, e.g. Salvadora persica and Salvadora oleoides⁵⁰, Commiphora wightii^{51,52}, Withania coagulans and Ephedra foliata⁴⁷ (Singh, 2004), Tecomella undulata⁵³; seed infestation by insects e.g. Acacia Senegal⁵⁴; low seed viability e.g. Anogeissus pendula⁵⁵.

Conservation efforts

Increasing population and their growing demand for food, grains, vegetable, fruits etc from limited land resources has pose a

severe threat on biological diversity. Regular assessment of biological diversity in any ecosystem is very necessary for collecting valuable information on current status of species for frequency, density, abundance, distribution, environmental stress on them, results of conservational efforts etc. Some natural causes that affect the innate distribution of floral species must be recognised. It is also required that along with the anthropogenic activities, some natural aspect responsible for the loss of biological diversity should also be identified and mitigated to conserve the biological diversity of the Thar region. Infestation by insects on flowers, fruits and seeds may causes deformities in them and anomalous physiological changes in the plants, which are responsible for less and immature seed production. Therefore, efforts to study the seed physiology and reproductive biology of threatened and endangered plants are the need of the time to select and propagate resistant plants. Application of biotechnology and bio-engineering are playing a vital role in conserve and preserve the germplasm of threatened and endangered Some conventional flora. methods (preservation of seeds and pollens) and nonconventional methods (Cryo-preservation of embryo, callus, shoot tips) must be used to preserve and conserve the germplasm of endangered and threatened species.

Conclusion

Thar desert is possessing fair biodiversity of flora as well as fauna. To meet the needs of increasing population, there are severe threats exerting on biodiversity. Land resources are limited and anthropogenic factors such as industrialization, infrastructural developments, colonization, highways and railways development etc alter habitat, fragment landscapes and threaten biodiversity. Therefore, assessment of biological diversity on regular basis is the need of the time. The valuable information on current status of different species, their distribution, frequency, density, abundance, environmental stress on them, etc may be helpful for the conservation of natural resources including flora and fauna of the region. Application of biotechnology and bio-engineering may also boost up the conservation of threatened and endangered species. The findings of the study will also be helpful for researchers and policymaker for further improvement and development of effective policies on conservation of the biological diversity of Thar desert.

References

- 1. Arora J, Goyal S and Ramawat KG 2010, Biodiversity, biology and conservation of medicinal plants of the Thar desert. In: *Desert Plants Biology and Biotechnology*. Ramawat KG (eds.) Springer-Verlag Berlin, Heidelberg, pp 3-36.
- Arya S, Toky OP, Harris SM and Harris PJC 1992,*Tecomella undulate* (Rohida): A valuable tree of Thar desert. *Int. Tree Corps. J.* 7 141–147.
- Baqri QH and Kankane PL2001, Desert: Thar. In: *Ecosystems of India*. AlfredJRB, Das AK and SanyalAK (eds.) ENVIS, Zoological Survey of India, Kolkata, India, pp 94-109.
- 4. Bhandari MM 1995, Flora of Indian Desert. In: Taxonomy and Biodiversity. CBS Publishers Delhi, pp 29-43.
- 5. Bhandari MM 1978, Flora of Indian Desert. Scientific Publishers:distributors, United Book Traders, Jodhpur, pp 1- 466.
- Biswas K and Rao RS 1953, Rajputana desert vegetation. Proceedings of National Institute of Science of India 19(3) 411-421.

- Blatter E and Hallberg G 1918-1921, The flora of Indian desert. *J. Bombay Nat. Hist. Soc.* 26 218-246, 525-551, 811-818; 27: 2-3, 270-279, 506-519.
- 8. CAZRI 2011. Rehabilitation ofdegraded rangelands and stabilization of production in arablearid land of Thar desert, India. Progress Report of **SUMAMAD** Activities, Central Arid Zone Research Institute (CAZRI), Jodhpur-342003.
- Charan PD and Sharma KC 2015, Medicinal flora of the Thar desert of Rajasthan: Therapeutic and antimicrobial importance. In: *Microbsin Action.* Singh J and Gehlot P (eds.) Agrobios (India) Jodhpur, pp 399-412.
- Choyal RR, Godara SK, Watts R and Sudhesh 2006, Nutritive contents of some halophytes of IGNP phase-I command area, Loonkaransar, Bikaner, Western Rajasthan. J. Phytol. Res.19(1) 151-152.
- Dangol DR and Shivakoti GP 2001, Plant diversity of western Chitwan floristic approach. J. Nat. Mus. 20 129-148.
- 12. Dhir RP 2003, Thar desert in retrospect and prospect. *Proc. Indian Natn. Sci. Acad.***69** A(2) 167-184.
- 13. Godara SK, Kumar N and Parihar R2015,Study of the ethno-medicinal importance of some plant species among flora of north–west Rajasthan. *IJAR*, **3**(3)723-726.
- 14. IIRS (Indian Institute of Remote Sensing) Report2011, Biodiversity characterisation at landscape level in North-West India and Lakshadweep islands using Remote Sensing and Geographical Information System. Shiva offset Press, Dehra Dun, India.

- 15. IPCC 2007, Climate Change -The Physical Science Basis: Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL (eds). Cambridge University Press. Cambridge, U.K., and New York, the USA, pp 996.
- Joshi R, Shekhawat NS and Rathore TS 1991, Micropropagation of Anogeissus pendula Edgew – Anarid forest tree. Indian J. Exp. Biol. 29 615–618.
- 17. Krishnan A 1977, A climatic analysis of the arid zone of North-western India. In: *Desertification and its control*.Jaiswal PL (eds.) ICAR, New Delhi, 69-76.
- Kumar S, Suri SS, Sonie KC and Ramawat KG 2003, Establishment of embryonic cultures andsomatic embryogenesis in callus cultures of guggul – *Commiphora wightii*(Arnott.) Bhandari.*Indian J. Exp. Biol.* 41 69– 77.
- 19. Mohammed S and Kasera PK 2014, Biodiversity conservation and ecological assessments of arid zone plants in Thar Desert of India. J. Ecosys. Ecograph. 4(3) 103.Proceedings of 3rdInternational onBiodiversitv Conference and Sustainable Energy Development, Valencia Conference Centre, Valencia, Spain June 24-26.
- 20. Nair NC and Nathawat GS 1956, Vegetation of Pilani and its neighbourhood. J. Bombay Nat. Hist. Soc.**54** 91-206.
- 21. Pareek A and Sharma S 1988, Phytogeographical affinities of the

aquatic flora of Rajasthan. *Acta Botanica Indica* **16** 19-22.

- 22. Poonia, S and Rao AS 2013, Climate Change and Its Impact on Thar Desert Ecosystem. J. Agri. Phy. **13**(1) 71-79.
- 23. Purohit SD, Ramawat KG and Arya HC 1979, Phenolics peroxidase and phenolase as related to gall formation in some arid zone plants. *Curr. Sci.* **48** 714–716.
- Pysek P, Sadlo J and Mandak B 2002, Catalogue of alien plants of the Czech Republic.*Preslia*, **74** 97 – 186.
- 25. Rahmani AR.1997, The effect of Indira Gandhi Nahar Project on the avifauna of the Thar desert. J. Bombay Nat. Hist. Soc. 94 233-266.
- 26. Rahmani AR and Soni RG 1997, Avifaunal changes in Indian Thar desert. J. Arid Environ. **36** 687-703.
- 27. Rajpurohit KS, Charan AKand Sen DN 1979, Microdistribution of plants in an abandoned salt pit at Pachpadra salt basin. *Ann. Arid. Zone* **18** 122-126.
- 28. Ramawat KG2010, Desert Plants: Biology and Biotechnology. XXI, Springer

Springer Berlin, Heidelberg pp 503.

- 29. Ramawat KG, Purohit SD and Arya HC 1979, Altered states of oxidizing enzymes and phenolic in Copdia gall. ISDT and UCDS (Jodhpur) **5** 38–41.
- Rao AR, Arshad M and Shafiq M 1989, Perennial Grass Germplasm of Cholistan Desert and its Phytosociology. Cholistan Institute of Desert Studies, Islamia University, Bahawalpur, Pakistan, pp 160.
- Rao RR 2006, Conservation and bioprospection of the floristic diversity in India: prospects, constraints and urgent tasks ahead. In: Proceedings of the 29th All India BotanyConference, 9–11 October, Department of Botany,

ML Sukhadia University, Udaipur, India, pp 1–5.

- Reddy CS 2008, Catalogue of invasive alien flora of India. *Life Sci. J.* 5(2) 84-89.
- Reddy CS, Bagyanarayana G, Reddy KN and Raju VS 2008, Invasive alien flora of India. In: National Biological Information Infrastructure, USGS, USA, pp 1-128.
- Reddy CS, Meena SL, Hari Krishna P, Charan, PD and Sharma KC 2012, Conservation Threat Assessment of *Commiphora wightii* (Arn.) Bhandari an Economically Important Species. *Taiwania*, 57 (3) 288-293.
- 35. Reddy CS, Harikrishna P, Meena SL, Bhardwaj R. and Sharma KC 2011, Composition of life form and biological spectrum along climatic gradient in Rajasthan, India. *Inter. J. Environ. Sci.* 1(7) 1632-1639.
- 36. Report of the Task Force on Grasslands and Deserts 2006, The Planning Commission (Environment and Forests Division) for the Eleventh Five Year Plan (2007-2012). Government of India, New Delhi.
- Richardson DM, Bond WJ and Dean WR.J 2000, Invasive alien species and global change: a South African perspective. In: *Invasive Species in a Changing World*. Mooney HA, Hobbs RJ (eds) Island Press. Washington DC, pp 303 –349.
- Rodgers WA, Panwar HS and Mathur VB 2002, Executive Summary. In: Wildlife protected network in India: A review. Wildlife Institute of India, Dehradun, India, pp44.
- 39. Roy BB, Dhir RP and Kolarkar AS 1978, Soils of Rajasthan desert and their characteristics. *Proc. Indian National Sci. Aca.***44** B(4) 161-167.

- 40. Roy MM, Tewari JC and Molla Ram 2011, Agroforestry for climate change adaptations andLivelihood improvement in Indian hot arid regions. *International Journal of Agriculture & Crop Sciences* **3**(2):43-54.
- Saini S and Yadav JP 2013, Genetic variation in natural populations of *Salvadora oleoides*: An important medicinal plant that needs conservation, *Asian J. Plant Sci. Res.* 3(5)20-27.
- 42. Saxena SK 1972, The concept of ecosystem as exemplified by vegetation of western Rajasthan. *Vegetatio* **24**(1-3) 215-227.
- 43. SaxenaSK, Squire VR and Ayub AT 1994, Halophytes of Indian desert communities on the various 'ranns'. In: *Tasks for Vegetation Science*.Squire VR. and Ayub AT (Ed) Kluwer Academic Publisher, Dordretcht, 32 pp 211-215.
- 44. Sharma SC and Purohit CS 2013, Grasses of north west Rajasthan. Madhu publications, Bikaner, 1-234.
- 45. Sharma R, Ramawat KG 2005, Regeneration of woody plants of arid zones with special reference to Prosopis: problems, perseverance and prospects. In: *Plant biotechnology: recent Advances*. Trivedi PC (eds) Panima Pub Crop, New Delhi, pp 325-349.
- 46. Shetty BV and Singh V 1987, Flora of Rajasthan, Vol.-I, Botanical Surveys of India, Calcutta.
- 47. Shetty BV and Singh V 1991, Flora of Rajasthan, Vol.-II, Botanical Surveys of India, Calcutta.

- Shrimal RL and Vyas LN 1977, Community structure of the mota Magra forest block (Udaipur). *Vegetation* 34(2) 127-132.
- Sikka DR 1997, Desert climate and its dynamics. *Current Science*, 72(1) 36-46.
- 50. Singh AK 2004, Endangered economic species of Indian desert. *Genet. Res. Crop. Evolut.***51** 371–380.
- Singh KV 2010, National Seminar on Impact of Climate Change on Biodiversity and Challenges in Thar Desert, organized by ZSI – Desert Regional Centre, Jodhpur, 9th July.
- 52. Upadhyay PB, Shikha R and Kumar A 2007, Traditional uses of medicinal plants among the rural communities of Churu district in the Thar Desert, India. *J. Ethnopharmacology* **113** 387–399.
- 53. Verma S and Khan JB 2014, Biodiversity assessment of aquatic plants in Jhunjhunu district of Rajasthan, India. *Inter. J. Geol. Earth Environ. Sci.* 4(1)91-95.
- Vyas DN and Dabgar YB 2013, 54. Invasion Prosopis of chilensis (Molina) Stuntz and its status compared with other dominant tree species of Thol lake wildlife sanctuary. north Gujarat.Indian Journal of Fundamental and Applied Life Sciences 3(4) 163-168.
- 55. Yaseen G, Ahmad M, Sultana S, Suleiman Alharrasi A, Hussain J, Zafar M and Shafiq-Ur-Rehman 2015,Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan. J. Ethnopharmacol, 163 43-59.