SOCIETY P

J. Phytol. Res. 28 (1 & 2): 15-23, 2015

ISSN 0970-5767

AN OVERVIEW OF TRICHODERMAL INTERACTIONS WITH PATHOGENS AND PLANTS

ABHISHEK VASHISHTHA^{1*}, PRABHU DAN CHARAN² and GAUTAM KUMAR $\rm MEGHWANSHI^1$

¹Department of Microbiology, Maharaja Ganga Singh University, NH-15, Bikaner (India). ²Department of Environment Science, Maharaja Ganga Singh University, NH-15, Bikaner (India). * Corresponding author : E-mail: abhiv24@gmail.com

One of the most significant requirements of modern world agriculture is to achieve higher yields in an environment permissive manner. Among various plant growth promoting microorganisms, *Trichoderma* occupies a unique position. Genus *Trichoderma* represents a very large and diverse group of fungi which plays a crucial role in uplifting the plant productivity. This fungus has a distinct property to infect and colonize in the roots of various plants. Interaction of plant roots with *Trichoderma* induces various genetic and physical changes in the plants. *Trichoderma* employs various tactics like antibiosis, competition, iron chelation, Hyperparasitism/Mycoparasitismetc to inhibit the growth of pathogens residing in the neighborhood. Additionally they secrete various chemicals/ Proteins /hormones to uplift the growth in many ways. Some *Trichoderma spp.* are known to induce systemic resistance against plant pathogens and tolerance against abiotic stress.

Keywords: Antibiosis; Competition; Endophytes; Induced systemic resistance; Iron Chelation; Mycoparasitism; plant growth promotion.

Introduction:

From the first decade of the last century, scientists knew usefulness the of filamentous fungi Trichoderma as а potential bio control agent against many pathogens¹.In this millennium plant Trichoderma has helped to sustain the agriculture yields and hence proved be a boon for human kind. This fungi is known to- enhance the soil fertility, improve the wellbeing of the crop plants, uplift the capability of the plants to degrade the toxic compounds, show antagonistic effect against pathogenic fungi and nematodes, modify rhizosphere, enhance plant defense mechanism, impart tolerance against abiotic stress, solubilize plant nutrients, increase the reproductive capability andimprove the plant defense mechanism^{2,3,4}.Symbioticassociation of some species of *Trichoderma* with plant roots is known to result in induced systemic resistance (ISR) and systemic acquired resistance (SAR) in plants. Because of the above mentioned reasons many species of *Trichoderma* have been used as commercial bio-pesticide/ bio-fungicide. In fact, globally 60% of the bio-fungicides companies use *Trichoderma* smain bio- fungicide. Some species of *Trichoderma* are also known to produce pigments (greenish-yellow, reddish and colourless), clinically important secondary metabolites and industrially important enzymes.

Trichoderma was first described long back in 1794⁵. This fungi is ubiquitous and is found predominantly in the agriculture and native soils throughout all climatic zones (nearly all tropical and temperate soils). They can grow as endophytes (in between living cells) or as saprophytes (in soil organic matter)or as human pathogens (in between mammalian tissues) 6,7,8 . They can colonize in both herbaceous and woody plants. Trichoderma generally reproduces asexually with a few showing sexual telomorphs. In general they are found as heterokaryotic individual. clonal The extensive study of the genome of many species of Trichoderma like T. virens, T. reesei, T. atroviride, T. harzianumetchas revealed the presence of many genes that can produce a variety of expression patterns. Such differential pattern of gene expression allows this fungus to adapt to varied set of environmental conditions. The genomic study has revealed, to some extent, the changes that occur in the plant, pathogen and Trichoderma itself when they interact with each other⁹. This review deals with the recent phylogenetic position of the fungi Trichoderma. It also aims to give an insight on various Trichodermal interactions.

The systematics and phylogenetics of Trichoderma:

The name *Trichoderma*was introduced byPersoon⁵ and from then onwards the systematics and taxonomy of this fungus has developed. *Trichoderma* belongs to - Family: Hypocreaceae, Order: Hypocreales, Class: Sordariomycetes and Phylum: Ascomycetes. Up to very long i.e. 1969,only one species of this fungi namely *T.viride*

was known¹⁰. Since then many species of genus Trichoderma like T. harzianum Rifai, T. hamatum, T. viride, T. polysporum and several others have been identified. In early nineties, 27 species and five sections of he genus Trichoderma were described byBissett^{11,12,13}. Many workers tried to rearrange the genus Trichoderma on the basis of its morphology but most of the classification system encountered one or the other problem and lead to false identification of certain species, for instance - name Trichodermaha rzianumwas used for many different species¹⁴. More reliable classification came after the development of molecular biology techniques. Using advanced molecular biology tools, scientists identified few more species of the genus Number of identified Trichoderma. Trichoderma species moved to 47 in the year 2002^{14} . Further advancement in molecular biology techniques (like oligonucleotide barcoding) along with the development of search tools like Tricho Blast added tremendously to our knowledge of species diversity of the Trichoderma^{15,16}. Many workers genus phenotypic microarrays used for identification¹⁷.Till now total of а 104 species have been listed by International Sub-commission the on *Trichoderma/Hypocrea*¹⁸. Some endophytic species have been reported by Chaverri and Samuels¹⁹. These species were analyzed on the basis of preference of their habitat and mode of nutrition. As a result various groups of endophytic Trichoderma spp were identified and their potential use in the development of innovative strategies of biological control was studied.

Trichoderma and its interactions:

*Trichoderma*is aubiquitous asexually reproducing fungi that can be frequently isolated from the soils of nearly all

environments. They are known to colonize in various plants ranging from herbaceous to woody. This genus is a fast growing strong opportunistic invader and is known to produce spores. Many of them can produce antibiotics and colonize in highly competitive environments 20 . They can compete with a number of other microbes (both pathogenic and nonpathogenic) for nutrients and space²¹. The mechanism of competition and efforts of colonization by different species of Trichoderma in various ecological niche are diverse and well developed²².

Interactions with plant pathogens:

In the event of establishing itself in the niche, Trichoderma interacts with the pathogenic and nonpathogenic microbes in many ways. In the process it proves itself as a very strong contender against many plant pathogens. Among various processes Antibiosis, Hyper-Parasitism and Competition are the main strategies employed by this fungus.

Antibiosis: Antibiosis is one of the most common mechanisms used by many microorganisms to inhibit growth of other microbes present within the same niche. Trichoderma also produce and release a range of antibiotics which down-regulate the growth of pathogenic microbes present in the vicinity²³. Three classes of antibiotics vizpeptaibols, volatile and water soluble have been isolated and characterized form Trichoderma. Examples of Peptaibols antibiotics are trichodecenins, trichotoxins A. trichotoxins B. trichorovins, tricholongins Bland BII, atroviridins A-C. neoatroviridins A-D and trichocellins. These compounds show antagonism against many pathogenic and non-pathogenic fungi, some Gram positive bacteria and few viruses. One or more of these are produced by various species of Trichoderma like T.

viride, T. harzianum, T. longibrachiatum, T. koningii, T. atrovirideetc. Peptaibolsanti biotics have a molecular weight of 500-2200 Da and are polypeptide in nature with a high concentration of non-proteinogenic amino acids²⁴. Alfa amino isobutyric acid is the most abundant non-proteinogenic amino acid found in Peptaibols antibiotics. Wiestet al^{25} , reported that the exogenous use of peptaibols stimulated the defense responsive genes in Tobacco plants. More over treated plants have reduced susceptibility towards Tobacco mosaic virus.

The typical smell of coconut in T. *viride*is suggestive of the presence of volatile compounds. 6-Pentyl-a-Pyrone(6 PAP)produced by T. harzianum, T. viride and T. koningii is a typical example of volatile antibiotic. 6 PAP so produced plays a key role in biological control of Fusariumoxysporum, **Botrytiscinerea** and Rhizoctoniasolani. Other volatile compound include salamethicins, tricholin, harzianic acid, massoilactone, gliovirin, glisoprenins andheptelidic acid.Viridin, Dermadin. Lignoren, Koningins, Trichoviridin and Koningic acid are examples of soluble antibacterial and antifungal compounds released by various species of *Trichoderma*²⁶. These compounds show antagonism against Aspergillus niger, Penicilium expansum, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Fusarium oxysporum etc.

Monte²⁷emphasized that many species of *Trichoderma* are especial in the sense that they can secrete lytic enzymes along with the antibiotics. Their combined action is more lethal. Lytic enzymes so produced have capacity to degrade walls the fungal cell and thus aids the penetration of antibiotics in the $cell^1$.

Hyperparasitism: Another important

mechanism employed by Trichoderma which has established it as a biocontrol agent is Hyperparasitism or Mycoparasitism. This process involves direct attack of a fungal species on another fungus. In this mechanism a direct contact of Trichoderma and the pathogen is established. This process is accompanied in many stages viz; (1) pathogen recognition (after receiving signals from the host) (2) Chemotrophic growth of Trichoderma(3) Attack by secretion of extracellular enzymes (4)Gradual penetration of the hyphae into the pathogen cell (5) Lysis of the host and cell death 22,28 .

Trichoderma synthesizes cell wall degrading lytic enzymes like Glucanase, Cellulase, Xylanase, Proteases and Chitinases which facilitate the hydrolysis of the fungal cell wall^{29,30}. Chitinases most important are the hydrolytic that plays key role in cell wall enzyme degradation.

Some Trichoderma species can produce siderophores. Some species of Trichoderma are also known to create acidic environments thereby establishing hostile conditions for the growth of pathogenic fungi³¹. Different *Trichodermas* trains may show varied responses. Gajera*et* al^{32} , has shown that the secretion of low levels of exochitinases by some Trichoder masppcan damage the cell wall of other fungi and hence play a significant role in inhibition of the growth of many pathogenic fungal strains. Some Trichoderma spp. Under go morphological changes like coiling and formation of appressorium that contain high amount of osmotic solutes like glycerol. Coiling aids in penetration inside the host cells. Once attached to the pathogen, Trichodermac oils around the pathogen and appresoria. The appresoriathus forms formed releases its content. This result in production of peptides that cause

facilitate of pathogenesis, entry Trichoderma hyphae in the pathogen and digestion of pathogen cell wall¹.Many factors are known to affect this process including some 20 to 30 proteins and other metabolites³³. Few Trichoderma spp. have been reported to kill nematodes and hence they can be used as potential bionematicides. Gene- for- Gene experiments are been done for further understanding 33 . Competition: Within a niche, Trichoderma acts as a very dominant competitor and do not permit intense growth of fungal and bacterial neighbors. Hence, competition proves to be a powerful weapon for the of the pathogens. eradication This

eradication is primarily done by starvation and scarcity of the growth limiting nutrients. Hence, strategy of competition proves most significant when effective biological control of fungal and bacterial pathogens is needed.

Trichoderma effectively competes with other microbial pathogens for carbon and iron. Under starvation conditions, like other fungi, it also produces siderophores. Siderophores are iron chelating substances which are used to mobilize and take up iron from the surrounding environment. The siderophores produced by Trichoderma are highly efficient and chelates iron more effectively as compared to other fungi in the neighborhood³⁴. Hence iron becomes limiting factor and this is how Trichoderma can effectively control the growth of fungal pathogens. Similarly, Trichoderma competes effectively for carbon source and can limit the growth of other fungi. The extraordinary utilization of nutrients by Trichoderma can be attributed to the fact that it has unique capability to synthesize ATP from a variety of nutrients. Fusarium Pythium, oxysporum, Ceratocystis paradoxa, **Botryotinia** cinerea. Rhizoctonia, Phytophthora and many more

pathogens are by *Trichoderma*. Use of *Trichoderma* in many pre and post-harvest damage.

Trichoderma-plant interactions:

The colonization of *Trichoderma* in the rhizosphere provides multifaceted benefit. A facultative symbiotic relation develops between the plants and the *Trichoderma* where the fungal partner obtains nutrient like sugars, vitamins etc from the plant partner and in turn the presence of *Trichoderma* help to improve the overall growth of the plant partner³⁵. *Trichoderma* has auniquedual property where on the one hand it can attack and limit pathogens present in the soil while on the other hand it grooms the plant defense.

Moreover. Trichoderma are also known to produce chemicals capable of enhancing seed germination like gibberellin and zeaxanthin. Some species of Trichoderma are capable of producing acids like coumaric acid, gluconic acid and citric acid. These acids help to release phosphorous and other microelements from the soil and the organic matter. Thus this fungus ensures availability of nutrients to the plants 35 .

Interaction of Trichoderma with plants starts with colonization (both internally and externally) in roots. The initial course of fungus-root association is not much understood as compared to the later part where fungal attachment, penetration and internal colonization takes place. Many species of Trichoderma are known to generate signals in the form of chemicals, proteins and hormones which promotes colonization of the fungus in the roots. Some of the species produce hydrophob in like proteins. They are cysteine rich proteins that assist in attachment. Qid74 of T. harzianum and TasHyd1 from T. of such proteins 36,37 . Both

these proteins play important role in fungal attachment to the roots and lateral growth of roots together with the formation and elongation of root hairs. As a result of the above said modifications, uptake of nutrient and their translocation in various parts of shoot takes place. This results in an overall increase in the plant biomass. Trichodermais also known to secrete Auxins. Auxins promote the growth of the roots and enhance its surface area. The increased surface area of the root aids in fungal colonization³⁸. Some Trichodermal species can produce a cellulose binding expans in like protein which facilitates their penetration in the root. They can also synthesis endopolygalacturonase which aids in their penetration inside the root. After penetration, fungi start to grow intercellularly within the epidermal layer and the outer cortex. Interaction of some species of Trichoderma with plant roots also results in - boosting of photosynthesis, activation of various metabolic processes, induction of defense and stress related pathways to boost the plant immunity and induction of cell wall metabolism to strengthen cell barriers.

Here this is tonote that *Trichoderma* are generally resistant to the compounds like terpenoids, flavonoids, phytoalexins, and phenols which are secreted by the plant partners in response to the fungal infection. Plant partner generally secrets these compounds to inhibit root colonization by the fungus.

workers^{1,39,40-42}havereported Many stimulate Trichoderma that can also systemic resistance in plants i.e. presence of Trichoderma provides resistance to the plants against the bacterial, fungal and viral diseases. T. asperellum, T. virens Т. atroviride and Τ. harzianum are representatives that have been studied

extensively for induced systemic resistance.

Many metabolites like Chitinases, low molecular Xylanases, weight compounds (released from the fungal cell wall or infected plants) etc play a critical role in inducing this resistance. Fungal infection in plants results in an increase in the concentration of enzymes and metabolites like chitinases, phytoalexins, phenylalanine ammonia glucanasescand lyase (PAL) which are responsible for induced systemic resistance (ISR)⁴³. Rubio et al^{44} , reported induction of 40 genes (related to stress management and metabolism of RNA, DNA and proteins) in infected plants with tomato *Trichodermahamatum*382.Similarly about 200 differentially expressed proteins were plants identified in Maize infected with Trichodermaharzianum T226.

Immediately after infection, the infected plants undergo a prompt ion flux followed by an oxidative burst. Callose deposition and polyphenol synthesis follows the oxidative burst. These events stimulate the jasmonate/ ethylene (JA/ET) and salicylate(SA) signaling. All such events enable the plants to acquire resistance against a variety of pathogens 42 . This resistance resembles the action of plant growth stimulating bacteria and is termed as JA/ET-mediated induced systemic resistance (ISR). When present in higher Trichoderma elicit concentrations, can salicylate mediated acquired resistance. Many chemicals released by Trichoderma like xylanase, trichovirin II etc can also stimulate immune responses in plants.Sm1/EPL1 a small hydrophobin like protein belonging to cerato-platanin (CP) familyis the best characterized elicitor^{16,45}.

Some comparatively new species of *Trichoderma* like *T. evansii*, *T. martiale*, *T. amazonicum etc* have been reported to live

endophytes⁴⁶. They induce as can transcriptomic changes in plants. Theirpresence induces expression of many genes which in one way or other protect the plants from abiotic stress. The changes are also seen in gene expression pattern of the shoot. Such changes alter the plant physiology, helps in better uptake of fertilizers and enhanced photosynthetic efficiency¹⁹. They may colonize in the surface of glandular trichomes and forms appressoria-like structures⁶.

Conclusion:

Trichoderma spp.provides a great tool for the betterment of agriculture yields. They help the plants to resist abiotic stress, uptake nutrients and develop systemic resistance. Thus they help the plants in many ways so as to improve the productivity. They have a great gene pool. Through extensive study, this pool can be utilized for various biotechnological applications. Hence, further detailed study of this fungal genus can be of great help for the mankind in an environmentally acceptable manner.

References:

- 1. Howell CR 2003, Mechanisms employed by *Trichoderma* species in the biological control of plant diseases; the history and evolution of current concepts. *Plant Dis*.**87** (1) 4–10.
- Tripathi P, Singh PC, Mishra A, Puneet S, Chauhan, Dwivedi S, Thakur R, Deo B and Tripathi R 2013, *Trichoderma*: a potential bioremediator for environmental cleanup. *Clean Technol. Environ. Policy*.15 541-550.
- 3. Daguerre Y, Siegel K, Edel-Hermann V and Steinberg C 2014, Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. *Fungal Biol. Rev.*,**28** 97-125.
- 4. Keswani C, Mishra S, Sarma B, Singh S and Singh H 2014, Unraveling the

efficient applications of secondary metabolites of various *Trichoderma* spp. *Appl. Microbiol. Biotechnol.* **98** 533-544.

- Persoon CH 1794, NeuerVersucheinersy stematischenEinteilung der Schwämme. Racodium Römer's Neues Magazin der Botanik. 1 123.
- 6. Bailey BA, Stream MD and Wood D 2009, *Trichoderma* species form endophytic associations within *Theobroma cacao* trichomes. *Mycol. Res.***113** 1365–1376.
- Hatvani L, Manczinger L, Vágvölgyi C and Kredics L 2013, Trichoderma as a Human Pathogen. In: *Trichoderma -Biology and Applications*.(ed.). Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M. CABI Publishers, Oxford shire, England, pp 292-313.
- Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M 2013,*Trichoderma* in agriculture, industry and medicine: an overview. In: *Trichoderma - Biology and Applications*. (Ed.) Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M. CABI Publishers, Oxfordshire, England, pp 1-9.
- Grigoriev IV, Nordberg H, Shabalov I, Aerts A and Cantor M 2012, The genome portal of the Department of Energy Joint Genome Institute. *Nucleic Acids Res.*40D26–32.
- 10. Bisby GR 1939, *Trichoderma viride* Pers. ex Fries and notes on *Hypocrea*. *Trans. Br. Mycol. Soc.***23** (2) 149–168.
- Bissett J 1991, A revision of the genus *Trichoderma*. II. Infrageneric classification. *Can. J. Bot.***69** 2357-2372.
- 12. Bissett J 1991a, A revision of the genus *Trichoderma*. III. Sect. Pachybasium. *Can. J. Bot*, **69** 2373-2417.

- Bissett J 1991b, A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. *Can. J. Bot.*69 2418-2420.
- Kullnig-Gradinger CM, Szakacs G and Kubicek CP 2002, Phylogeny and evolution of the genus *Trichoderma*: a multigene approach. *Mycol. Res.*106 757-767.
- Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T and Samuels GJ, 2015. Systematics of the *Trichoderma harzianum* species complex and the re-identification of commercial biocontrol strains. *Mycologia* **107**(3) 558-90.
- 16. Djonovic S, Pozo MJ, Dangott LJ, Howell CR and Kenerley CM 2006, Sm1, a proteinaceous elicitor secreted by the biocontrol fungus *Trichoderma virens* induces plant defense responses and systemic resistance. *Mol. Plant Microbe. Interact.*19 838–853.
- 17. Bochner BR, Gadzinski P and Panomitros E 2001, Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. *Genome Res.***11** 1246-1255.
- Błaszczyk L, Marek S, Krzyszt of S,Jolanta L and Małgorzata J2014, *Trichoderma* spp. – application and prospects for use in organic farming and industry. *Journal of Plant Protection Research* 54(4) 309-317.
- 19. Chaverri P and Samuels GJ 2013, Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of inter kingdom host jumps and major shifts in ecology. *Evolution.***67** 2823-2837.
- 20. Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S and Monte E 2011, Functional analysis of the *Trichoderma harzianum nox1* gene,

encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against *Pythiumultimum. Appl. Environ. Microbiol.***77** 3009-3016.

- 21. Kandula DRW, Jones EE, Stewart A, McLean KL and Hampton JG 2015, Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. *Biocontrol Sci. Technol.*, 25(9) 1052-1069.
- 22. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL and Lorito M 2008, *Trichoderma*- plant – pathogen interactions. *Soil Biol. Biochem.*, 40(1) 1–10.
- 23. Harman GE 2006, Overview of mechanism and uses of *Trichoderma* spp. *Phytopathology* **96**190-194.
- 24. Degenkolb T, Berg A, Gams W, Schlegel B and Grafe U 2003, The occurrence of peptaibols and structurally related peptabiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. *J. Pept. Sci.***9** 666–678.
- 25. Wiest A, Grzegorski D and Xu B 2002, Identification of peptaibols from *Trichoderma viren s*and cloning of a peptaibol synthetase. *J. Biol. Chem.***277** 20862-20868.
- 26. Reino JL, Guerrero RF, Hernandez-Galan R and Collado IG 2008, Secondary metabolites from species of the biocontrol agent *Trichoderma*. *Phytochem. Rev.* **7**(1) 89–123.
- 27. Monte E 2001, Understanding *Trichoderma*, between biotechnology and microbial ecology. *Int. Microbiol.* 4(1) 1–4.
- Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M and Kubicek CP 1999, Chitinase gene expression during mycoparasitic

interaction of *Trichoderma harzianum* with its host. *Fungal Genet. Biol.***26** 131-140.

- 29. Harman GE, Howell CR, Viterbo A, Chet I and Lorito M 2004, *Trichoderma* species – opportunistic, avirulent plant symbionts. *Nat. Rev. Microbiol.***2** (1) 43–56.
- Strakowska J, Błaszczyk L and Chełkowski J 2014, The significance of cellulolytic enzymes produced by *Trichoderma*in opportunistic lifestyle of this fungus. *J. Basic Microb.***54** (Suppl. 1) S2–13.
- Benitez T, Rincon AM, Limon MC and Codon AC 2004, Biocontrol mechanisms of *Trichoderma* strains. *Int. Microbiol*.7(4) 249–260.
- 32. Gajera H, Domadiya R, Patel S, Kapopara M and Golakiya B 2013, Molecular mechanism of *Trichoderma*as bio-control agents against phytopathogen system – a review. *Curr. Res. Microbiol. Biotechnol.***1** 133-142.
- 33. Rai D and Mehra P 2015, A review on interactions of *Trichoderma* with plant and pathogens. *Res.J.Agri.For.Sc.***3**(2) 20-23.
- 34. Alabouvette C, Olivain C, Migheli Q and Steinberg C 2009, Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wiltinducing *Fusariumoxysporum*. *New*. *Phytol.***184** 529-544.
- 35. Bailey BA and Melnick RL 2013, TheendophyticTrichoderma. In: *Trichoderma* - Biology and Applications. (Ed.) Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M. CABI Publishers, Oxfordshire, England, pp152-172.
- 36. Samolski I, Rincon AM, Pinzon LM, Viterbo A and Monte E 2012, The qid74 gene from *Trichoderma harzianum* has a

role in root architecture and plant biofertilization. *Microbiol*.**158** 129–138.

- 37. Viterbo A and Chet I 2006, TasHyd, a new hydrophobin gene from the biocontrol agent *Trichoderma asperellum* is involved in plant root colonization. *Mol. Plant. Pathol.***7**249– 258.
- 38. Contreras-Cornejo HA, Macıas-Rodriguez L, Cortes- Penagos C and Lopez-Bucio J 2009, *Richoderma virens*, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. *Plant Physiol.*, **149** 1579–1592.
- 39. Khan J, Ooka JJ, Miller SA, Madden LV, Hotitink HAJ 2004, Systemic resistance induced by *Trichoderma hamatum*382 in cucumber against *Phytophthora* crown rot and leaf blight. *Plant Dis*.88 (3) 280–286.
- Brunner K, Zeilinger S, Ciliento R, Woo SL, Lorito M, Kubicek CP and Mach RL 2005, Improvement of the fungal biocontrol agent *Trichodermaatro viride* to enhance both antagonism and induction of plant systemic resistance. *Appl. Environ. Microbiol.***71** (7) 3959–3965.
- 41. Woo SL and Lorito M 2007, Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Novel Biotechnologies for Biocontrol Agent Enhancement and

Management. (Ed.) Vurro M and Gressel J. Springer Press, Amsterdam, The Netherlands, pp 107–130.

- Shoresh M, Harman GE and Mastouri F 2010, Induced systemic resistance and plant responses to fungal biocontrol agents. *Annu. Rev. Phytopathol.*, 48 21– 43.
- 43. Shoresh M, Yedidia I and Chet I 2005, Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by *Trichoderma asperellum*T203. *Phytopathology***95**76-84.
- 44. Rubio MB, Dominguez S, Monte E and Hermosa R 2012, Comparative study of *Trichoderma* gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. *Microbio*.**158** 119–128.
- 45. Seidl V, Marchetti M, Schandl R, Allmaier G and Kubicek CP 2006, EPL1, the major secreted protein of *Hypocreaatro viridis* on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. *FEBS J.***273** 4346– 4359.
- 46. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV and Kubicek CP 2011, *Trichoderma*: the genomics of opportunistic success. *Nat. Rev. Microbiol.* 16 749-759.