EFFECT OF AQUEOUS EXTRACT OF *PARTHENIUM HYSTEROPHORUS* LINN. ON SEED GERMINATION AND RADICLE ELONGATION OF SOME CEREALS AND PULSES

BABITA SINGH and M.P. TRIVEDI

Department of Botany, Patna Science College, Patna University, Patna-800005, India.

The wheat grains treated by aqueous extract of *Parthenium hysterophorus* showed decreased germination percentage. In inflorescence extract, the initiation period was extended to 120 h from 24 h and final germination percentage recorded was 15.6. In barley grains, the root and stem extract were more potent and there was only 5% germination at 20% concentration. In *Vigna radiata*, the root and inflorescence extracts were more potent as against stem and leaf extracts. In *Vigna mungo*, the root extract (20% concentration) extended the initiation period to 96 h. The rate of seed germination per 24 h was 1.7% and final germination percentage as 13%. Correlation coefficient (r) between extract concentrations and percentage germination and radicle elongation has also been worked out and nature was negative.

Keywords : Aqueous extract; Cereals and pulses; *Parthenium hysterophorus*; Radicle elongation; Seed germination.

Introduction

Parthenium hysterophorus is commonly known as carrot or congress weed of family Asteraceae. It is a wild, annual, much-branched erect herb with tap root stock. The stem is solid and striated with variable length of internodes. Leaves are pinnately dissected and flowers are arranged in terminal capitulum. It is commonly found as ruderals and has also invaded crop fields. The pollen grains are allergic and cause asthma¹. The main chemicals in Parthenium are parthenin, p-coumaric acid, caffeic acid and sesquiterpene lactones. These inhibit the germination and growth of several crop plants²⁻⁵. In India, work is going on for replacement of this species by others6,7. In the light of above works, the present investigation was worked out to judge the competitive aggressiveness of P. hysterophorus over cereals and pulses in terms of germination and radicle length.

Material and Methods

The materials for present investigation are *Parthenium hysterophorous*, a congress weed and cereals like *Triticum aestivum* and *Hordeum vulgare* and pulses like *Vigna radiata* and *Vigna mungo*. Seeds of these species were collected locally and germinated on filter paper backed with cotton wool.

Roots, stems and leaves and inflorescence of *P. hysterophorus* were collected and chopped into small pieces. Ten percent aqueous extracts were prepared by crushing 10 gm leaves or stems or roots or inflorescence the case may be in a mixer with 100 ml distilled water. Extraction was done at room temperature by simple extraction method. From mother solution, desired concentrations 1, 5, 10 and 20% were prepared by dilution with distilled water. Now for germination and radicle growth, 25 seeds of species concerned were taken and surface sterilized by $HgCl_2$. Seeds were finally put in petridishes on filter paqper backed with cotton wool and were moistened with extracts of desired concentrations. The treatments were replicated thrice.

The petridishes were kept in diffuse light and at temperature $26\pm3^{\circ}$ C. Daily readings were taken of germinating seeds. Period of initiation, rate of germination per 24 h and total percentage germination were recorded. Data were analysed by applying statistical methods⁸. The experiment was done in Deptt. of Botany, Patna Science College, Patna.

Results and Discussion

In wheat grains, the germination in control is 97%. The initiation period is 24 h and rate of seed germination per day is 14.3%. The grains treated by root, stem, leaf and inflorescence extract showed decreased germination percentage. The stem and leaf extract showed more or less similar effects. In leaf extract the initiation period increased from 24 h to 72 h as against inflorescence extract, where the period extended upto 120 h. The rate of

germination per 24 h was also drastically affected in inflorescence extract and at 20% extract, it was 2.8% only (Table 1). The radicle elongation was also affected. In control it was 10.5 cm while only 0.46 cm at 20% inflorescence extract.

In barley grains, the germination in control is 95%. The initiation period is 24 h and rate of seed germination / 24h is 14.3%. In response to each extract, the initiation period was affected and rate of seed germination per day also suffered. In stem extract, the initiation period was extended to 120 h and the rate of seed germination per 24 h is 1.1% (Table 2). The radicle elongation was also affected as in wheat. Inflorescence extract was more potent as against other extracts. At 20% inflorescence extract, the radicle length was 0.4 cm only.

In Vigna radiata the germination in control is 90.66%. The initiation period is 48 h and rate of seed germination per 24 h is 13.2%. The root and inflorescence extracts were more potent than stem and leaf extract. There was linear reduction in germination percentage from lower concentration to higher ones. In 20% inflorescence extract, the initiation period was 96 h, rate of seed germination/ 24h was 1.7% and final germination percentage was 13%. The radicle length in control is 4.2 cm. At 20% root and inflorescence extract, the radicle length was 0.7 cm and 0.5 cm, respectively (Table 3).

The germination percentage in *Vigna mungo* is similar as that of *Vigna radiata*. The initiation period and rate of seed germination per 24 h are also similar. Root extract treatment extended the initiation period to 96 h, the rate of seed germination/24 h to 1.7% and final germination percentage 13%. Similar was the result in inflorescence extract. The stem and leaf extract showed intermediate values.

In *Vigna mungo* the radicle length in control is 3.4 cm. It shows, maximum reduction in 20% inflorescence extract and length was 0.4 cm (Table 4).

Correlation co-efficient (r) between different concentrations and germination percentage and radicle elongation has been worked out. The nature of correlation was judged to be negative (Tables 5-6).

Thus, it is obvious that this weed has strong allelopathic potential against cereals and pulses. Aqueous inflorescence extracts were more potent as against root, stem and leaf extracts. The reduced germination percentage and radicle elongation were directly proportional to the increasing concentrations among the treatments. Twenty percent of the inflorescence extract had the strongest inhibitory effect.

Allelopathic effects of parthenin against two

weedy species Avena fatua and Bidens pilosa have been worked out and reported that parthenin exerts an inhibitory effect on the growth and development of both weeds and can be further explored as an herbicide for future weed management strategies9. The inhibition in seed germination was due to allelochemicals, particularly phenolics10-12 and other secondary metabolites like growth regulators, alkaloids13, terpenoids14,15 and toxins which are present in various plant parts and are released into the environment through volatilization, leaching, root exudation and decomposition of plant residues. Inhibitory effects of weed extracts have been advocated due to presence of phenolics, caffeic, gallic, protocatechuic and ferulic acids¹⁶. Allelopathic effects of seven weed extracts on seed germination in different varieties of wheat were investigated⁴. There was 90% reduction with P. hysterophorus in seed germination in each variety. Three phenolic acids in crushed plant materials of P. hysterophorus were also identified.

Parthenium is one of the best known plant invaders in the world linking allelopathy to exotic invasion^{17,18}. Lack of co-evolved tolerance of resident vegetation to new chemicals produced by the invader could allow these newly arrived species to dominate natural plant communities¹⁹. *P. hysterophorus* has the potentials to disrupt natural ecosystem by allelopathic effect, which may be an important mechanism involved in invasive success of this plant^{20,21}.

There are reports that allelochemicals inhibit respiration¹¹ and energy transfer²² responsible for ATP synthesis. The harmful effect of higher extract concentration on growth parameters might be due to excess of allelo-chemicals which inhibit Gibberellin and IAA induced growth⁵. Field experiments are necessary before any final conclusions are made on allelopathic effects of weed species²³.

Acknowledgement

We are thankful to Prof. U.K. Sinha, Head, Department of Botany, Patna University for providing lab facilities. **References**

- Rao M, Prakush O and Subba Rao P U 1985, Reaginic allergic to *Parthenium* pollen, Evaluated by skin test and Rasto. *Clinical Allergy* 15(5) 449-454.
- Swaminathan C, Rai R S and Smesh K K 1990, Allelopathic effects of *Parthenium hysterophorus* on germination and growth of a few multipurpose trees and arable crops. *Int. Tree Crops J.* 6 143-150.
- 3. Dhawan S R, Dhawan P and Gupta S K 1998. Allelopathic interaction between *Parthenium* and some vegetable plants : Studies on seed germination.

J. Phytol. Res. 23(2): 295-300, 2010

±0.35 ±0.20 ±0.33 ±0.21 0.46 ±0.14 radicle in cm To Algue Iength of 10.5 4.6 2.5 1.3 Inflorescence extract ±2.02 97.33 ±1.44 ±2.33 ±2.88 ±2.07 uon -eniminag bees % 60.33 15.6 75 50 (% 12.5 Rate of seed ger-mination/24 h (in 14.3 4.5 2.8 9.1 in your 120 24 24 24 48 initiation period ±.35 ±0.19 3.7 ± 0.20 ±0.16 7.5 ±0.65 ma ni alaiban Mean length of 10.5 1.2 5 ±2.02 ±1.44 44.33 ±2.33 extract ±2.88 29 ±2.07 uon -eniming beek 97.3 50.33 Leaf 5 Rate of seed ger-mination/24 h (in %) 14.3 11.4 4.5 5.7 9.1 in hour 24 48 12 24 24 Initiation period ± 0.10 4.5 ± 0.16 ± 0.20 10.5 ±0.35 5.4 ± 0.24 mo ni eloiber Mean length of 4.2 3.3 ± 2.02 ± 2.02 ± 1.44 ± 2.07 ± 2.07 uon Stem extract -eniminag baas % 97.33 60.33 68.33 49 29 Rate of seed ger-mination/24 h (in %) 14.3 10.2 9.1 7.4 4.5 In hour 24 24 54 24 24 initiation period ±0.35 ± 0.16 ± 0.42 ± 2.09 3.6 ± 0.26 mo ni eloiber Mean length of 10.5 4.9 3.4 3.2 ± 2.33 ± 2.33 ± 2.51 93.33 ± 2.51 *9*7.3 ± 1.44 Root extract uoit 62.66 44.33 23.66 -enimag bees % (% 4.3 6.85 13.1 ni) d 42/noitenim 9.1 4 Rate of seed gerin your 24 5 24 24 24 Initiation period Control (%) anoitentnacions (%) 10 20 5

Table 2. Effect of Parthenium, extracts on different parameters of Hordeum vulgare.

			-	-	-	-	
Inflorescence extract	Mean length of radicle in cm	11.5 ±0.35	4.9 ±0.19	2.9 ±0.25	0.52 ±0.11	0.4 ±0.063	
	% seed germina- tion	95 ±2.88	75 ±2.88	62.66 ±2.51	15 ±0.57	13 ±0.57	
Inflor	Rate of seed ger- mination/24 h (in %)	14.3	12	8.5	2.3	1.7	
	Initiation period in hour	24	48	48	48	96	
	Mean length of radicle in cm	11.5 ±0.35	8.7 ± 0.20	7.6 ±0.25	5.4 ±0.28	4.5 ±0.48	
Leaf extract		95 ±2.88	75 ±2.88	62.66 ±2.51	15.6 ±2.33	15 ±0.57	
	Rate of seed ger- mination/24 h (in %)	14.3	11.4	8.5	3.4	2.3	
	Initiation period in hour	24	48	48	96	96	
D	Mean length of mo ni eloibar	11.5 ±0.35	5.7 ±0.25	4.5 ±0.22	4.2 ±0.085	3.5 ±0.18	
Stem extract	% seed germina- tion	95 ±2.88	52.66 ±1.76	29 ±2.07	15 ±0.57	5.33 ±0.88	
Ste	Rate of seed ger- mination/24 h (in %)	14.3	8	4.6	2.3	IJ	
	Initiation period in hour	24	48	48	96	120	
	fo dignəl nsəM mə ni ələibər	11.5 ±0.35	5.4 ±0.28	4.1 ±0.40	2.8 ±0.13	1.5 ±0.18	20
Root extract	% seed germina- tion	95 ±2.88	52.66 ±1.76	29 ±2.09	15 ±0.57	5.33 ±0.88	
	Rate of seed ger- mination/24 h (in %)	14.3	8.0	5.1	2.2	0.57	
18	Initiation period in hour	24	48	48	96	96	
(9	 8) anoitentrations 	Control	-	5	0	20	

Table 1. Effect of Parthenium extracts on different parameters of Triticum aestivum.

297

ta	
ia	
id	
2	
Vigna rac	
60	
f Vign	
-	
LS O	
ferent parameters	
et	1
B	
La	
pa	
It]	
er	
er	
Ē	
D	
extracts on differen	
S	
t	
La	
X	
e	
u	
nit	
e	
irthen	
a	
P	
of	
5	
ĕ	
E	
ш.	
~	
Table .	
ab	
F	

<u> </u>					-		
t.	Mean length of ma cialicle in cm	4.2 ±0.092	3.3 ±0.12	1.7 ±0.11	1.5 ±0.16	0.5 ±0.11	
Inflorescence extract	% seed germina- tion	90.66 ±1.20 4.2	60.33 ±2.02	44.33 ±2.33	15 ±0.57	13 ±0.57	
Inflore	Rate of seed ger- mination/24 h (in %)	13.2	9.7	6.3	2.3	1.7	
	Initiation period in hour	48	48	48	72	96	
	Mean length of radicle in cm	4.2 ±0.092	4.1 ±0.096	2.7 ±0.13	1.3 ±0.13	0.62 ±0.066	
Leaf extract	% seed germina- tion	90.66 ±1.20	75 ±2.88	68.33 ±2.02	60.33 ±2.02	29 ±2.07	
-	Rate of seed ger- mination/24 h (in %)	13.2	11.4	10.3	9.7	4	
	Initiation period in hour	48	48	48	48	72	
Stem extract	Mean length of madicle in cm	4.2 ±0.092	2.8 ±1.02	2.4 ±0.15	1.5 ±0.12	1.2 ±0.085	
	-serimina- tion	90.66 ±1.20	75 ±2.88	68.33 ±2.02	44.33 ±2.33	15.66 ±2.33	
Ste	Rate of seed ger- mination/24 h (in %)	13.	10.3	11.4	8.5	2.8	
	Initiation period in hour	48	48	48	48	72	
Root extract	To thgnal nasaM mo ni aloiban	4.2 ±0.092	2.9 ±0.12	2.5 ±0.17	1.9 ±0.25	0.7 ±0.12	
	seed germina- ion	90.66 ±1.20	68.33 ±2.02	62.66 ±2.51	44.33 ±2.33	15.66 ±2.33	
	<pre>{ate of seed ger- innation/24 h (in (%)</pre>	13.2	10.3	8.5	6.9	2.8	
	initiation period	~	48	48	48	72	
	Concentrations (%)	Control		5	10	20	
L							

Table 4. Effect of Parthenium extracts on different parameters of Vigna mungo.

	Mean length of mo ni sloiber	3.4 ±0.15	3.3 ±0.16	1.4 ±0.083	1.2 ±0.092	.40 ±0.070
Inflorescence extract	% seed germina- tion	90.66 ±1.20 3.4	60.33 ±2.02 3.3	44.33 ±2.33	15 ±0.57	13 ±0.57
1.00	Rate of seed ger- mination/24 h (in %)	13.2	9.7	6.3	2.3	1.7
	Initiation period in hour	48	48	48	72	96
	Mean length of radicle in cm	3.4 ±0.15	3.4 ±0.15	1.8 ±0.12	1.4 ±0.10	0.54 ±0.12
Leaf extract	% seed germina- tion	90.66 ±1.20	68.33 ±2.02	44.33 ±2.33	60.33 ±2.02	15 ±0.57
	Rate of seed ger- mination/24 h (in %)	13.2	10.2	6.8	10.2	2.2
	Initiation period in hour	48	48	48	72	120
	Mean length of madicle in cm	3.4 ±0.15	2.4 ±0.14	2.2±0.085	1.5±0.11	1.2 ±0.085
Stem extract	% seed germina- tion	90.66 ±1.20	62.66 ±2.51	60.33 ±2.02	15.6 ±2.33	15 ±0.57
Stei	Rate of seed ger- mination/24 h (in %)	13.2	8.5	5.7	3.1	2.2
	Initiation period in hour	48	48	48	72	96
	Mean length of madicle in cm	3.4±0.15	2.7 ±0.13	2.4±0.17	2.1±0.15	1.3±0.12
Root extract	seed germina- kon	90.66 ±1.20	62.66 ±2.51	29±2.07	15 ±0.57	13 ±0. <i>5</i> 7
	Rate of seed ger- mination/24 h (in (%)	13.2	9.1	4.5	2.2	1.7
-	Initiation period in hour		48	48	72	96
(%) snoitations (%	Control	_	5	10	20

Singh & Trivedi

298

J. Phytol. Res. 23(2): 295-300, 2010

S. No.	Concentration and germination percentage	Value of correlation coefficient (r)	Nature of correlation
1.	Root extract of Parthenium on wheat grain	0.955*	- ve
2.	Stem extract of Parthenium on wheat grain	0.999***	- ve
3.	Leaf extract of Parthenium on wheat grain	0.9293*	- ve
4.	Inflorescence extract of Parthenium on wheat grain	0.931*	- ve
5.	Root extract of Parthenium on barley grain	0.9452*	- ve
6.	Stem extract of Parthenium on barley grain	0.9058*	- ve
7.	Leaf extract of Parthenium on barley grain	0.915*	- ve
8.	Inflorescence extract of Parthenium on barley grain	0.893*	- ve
9.	Root extract of Parthenium on moong	0.999***	- ve
10.	Stem extract of Parthenium on moong	0.9395*	- ve
11.	Leaf extract of Parthenium on moong	0.966***	- ve
12.	Inflorescence extract of Parthenium on moong	0.8847*	- ve
13.	Root extract of Parthenium on urad	0.8455*	- ve
14.	Stem extract of Parthenium on urad	0.92015*	- ve
15.	Leaf extract of Parthenium on urad	0.9182*	- ve
16.	Inflorescence extract of Parthenium on urad	0.8867*	- ve

Table 5. Correlation between Parthenium concentrations and germination percentage.

*Significant at P = 0.05

^{***}Significant at P = 0.01

Table 6. Correlation between Parthenium concentrations and radicle length	Table 6.	s and radicle length.
---	----------	-----------------------

S.No.	Concentration and radicle length	Value of correlation coefficient (r)	Nature of correlation
1.	Root extract of Parthenium on wheat grain	0.793	- ve
2	Stem extract of Parthenium on wheat grain	0.840*	- ve
3.	Leaf extract of Parthenium on wheat grain	0.964***	- ve
4.	Inflorescence extract of Parthenium on wheat grain	0.919*	- ve
5.	Root extract of Parthenium on barley grain	0.975***	- ve
5.	Stem extract of Parthenium on barley grain	0.924*	- ve
7.	Leaf extract of Parthenium on barley grain	0.981*	- ve
8.	Inflorescence extract of Parthenium on barley grain	0.865*	- ve
9.	Root extract of Parthenium on moong	0.999***	- ve
10.	Stem extract of Parthenium on moong	0.937*	- ve
11.	Leaf extract of Parthenium on moong	0.934***	- ve
2.	Inflorescence extract of Parthenium on moong	0.918*	- ve
3.	Root extract of Parthenium on urad	0.998***	- ve
14.	Stem extract of Parthenium on urad	0.951*	- ve
15.	Leaf extract of Parthenium on urad	0.921*	- ve
16.	Inflorescence extract of Parthenium on urad	0.872*	- ve

"Significant at P = 0.05

Adv. in Plant Sci. 11 101-104.

- Sharma Kavita, Rao PB and Pandey N 2009, Allelopathic effect of seven weed extracts on seed germination in different varieties of wheat (*Triticum aestivum* L.), J. Indian bot. Soc. 88(1-2) 35 - 40.
- 5. Nupur 2009, Problems and conservational approach of Angiospermic biodiversity in Patna and Vaishali of Bihar, Ph.D. Thesis, Patna University.
- 6. Dhawan S R and Dhawan P 1995, Biocontrol of congress grass on seed germination in some crop plants. *Acta Botanica Indica* 23 113-114.
- Mahadevappa M and Ramaiah H 1990, Pattern of replacement of *Parthenium hysterophorus* plants by *Cassia sericea* in waste lands. *Indian J. Weed Sci.* 20 83-85.
- Steel R G D and Torrie J H 1980, Principles and procedures of statistics. A biometrical approach, 2nd edition, McGraw Hill Book Co. Inc. New York, USA.
- Batish D R, Singh H P, Kohli R K, Saxena DB, Shalinder K and Kaur S 2002, Allelopathic effect of parthenin against two weedy species, *Avena fatua* and *Bidens pilosa. Environ. Exp. Bot.* 47(2) 149-155.
- 10. Kaur A, Pant A K and Rao P B 1999, Allelopathic effect of four agroforestry tree species on seed germination and seedling growth of certain varieties of wheat. *Indian J. Ecol.* **26**(2) 125-135.
- 11. Rice E L 1984, *Allelopathy*, New York Academic Press, New Delhi pp. 422.
- 12. Turkey Jr H B 1979, Implication of allelopathy in Agricultural Plant Science. *Bot. Rev.* **35** 1-13.
- 13. Overland L 1996, The role of allelopathic substances in the 'smother crop' barley. Am. J. Bot. 53 423-566.
- 14. Miller H E, Mabry T J, Turner BL and Payne WW 1968, Intraspecific variation of sesquiterpene lactones in *Ambrosia psilostachya. Am. J. Bot.* **55** 316-324.
- 15. Geissman T A, Griffin S, Waddell T G and Chen H H

1969, Sesquiterpene lactones. Some new constituents of Ambrosia species, A. psilostachya and A acanthicarpa. Phytochemistry 8 145-150.

- 16. Henwen W, Haig T, Partley J, Temarle D Wu H and An M 2000, Distribution and exudation of allelochemicals in wheat (*Triticum aestivum*). J. Chem. Ecol. **26**(9) 2141-2154.
- Kanchan D D and Jayachandra 1979, Allelopathic effects of *Parthenium hysterophorus* L.I. Exudation of inhibitors through roots. *Plant and* Soil 53 27-35.
- Pandey D K 1994, Inhibition of Salvinia molesta (Mitchell) by Parthenium (Parthenium hysterophorus L) Relative effect of flower, leaf, stems and root residue on Salvinia and paddy. J. Chem. Ecol. 20 3123-3131.
- 19. Hierro S L and Callaway R M 2003, Allelopathy and exotic plant invasion. *Plant and Soil* **256** 29-39.
- Evans H C 1997, Parthenium hysterophorus L. A review of its weed status and the possibilities for biological control. Biocontrol News Information 18 89-98.
- 21. Singh Lina, Raghava Nisha and Raghava R P 2009, Allelopathic substances of *Parthenium* weed and interactions of *Solanum melongena*. *Bioscience*, *Biotechnology Research Asia* 6(2) 855-862.
- 22. Moreland D E and Novitzky W P 1985, Effect of phenolic acids, coumarins and flavonoids on islated chloroplast and mitochondria (ed. G.R. Waller) ACS symposium series American Chemical Society in Allelochemicals : *Role in Agriculture and Forestry* Washington DC 330 247-261.
- Rao OP, Saxena A K and Singh B P 1994, Allelopathic effects of certain agroforestry tree species on the germination of wheat, paddy and gram. *Ann. For.* 2(1) 60-64.

300