

J. Phytol. Res. 30 (1): 1-6, 2017

LIGHT MICROSCOPIC STUDY OF POLLEN MORPHOLOGY ON SELECTED SPECIES OF JATROPHA L.

STEPHEN A.^{1*}, NIKITA S.^{1,2}, NIDHI T.^{1,2}, NOORUNNISA B¹ and RAVIKUMAR K.¹

¹School of Liberal Arts and Sciences, Trans Disciplinary University, Bengaluru - 560064, India ²University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi - 110078. India

* Corresponding author : E-mail: stephanos.crown@gmail.com

The pollen morphology of 5 Jatropha species namely J. glandulifera, J. gossypifolia, J. integerrima, J. multifida and J. tanjorensis of family Euphorbiaceae from India was studied using Light Microscope (LM). The pollen grains of Jatropha are typically crotonoid, uniformly spheroidal, in aperturate/omniaperturate, with hexagonally arranged exinous knobs.

Keywords: Crotonoid; Euphorbiaceae; Jatropha; Omniaperturate; Pollen morphology.

Introduction

The genus Jatropha L. appears to be a natural genus first described by Linnaeus in 1737¹ belonging to tribe Jatropheae of subfamily Crotonoideae in Euphorbiaceae family² and represents about 175 species in the world³⁻⁴, of which 12 species have been reported from India⁵. Lectotype species of this genus is *Jatropha gossypifolia* L.⁶. The genus Jatropha shows great variation in terms of their morphological diversity. Morphological characteristics of pollen grains can be useful in plant taxonomy due to their many pollen traits are influenced by the strong selective forces involved in various reproductive processes, including pollination, dispersal, and germination⁷⁻¹¹.

Pollen morphology is an expression of part of the genome and very useful in taxonomic studies¹² and also valuable in the genetic changes of crops as well the weedy plants¹³⁻¹⁴. Hence, five important species belonging to genus Jatropha were selected

and studied for pollen morphology.

Material and Methods

Collection of flowers for pollen study: Five species of Jatropha viz., J. glandulifera Roxb., J. gossypifolia L., J. integerrima Jacq., J. multifida L. and J. tanjorensis J.L. Ellis and Saroja were selected for pollen morphological studies. Fresh flowers were collected before dehiscence and stored in formaldehyde (20%). Pollen grains were from under dissected anther light microscope and used for Acetolysis method¹⁵. The pollen grains were observed light microscope with under 1000x magnification. For all the species, herbarium specimens were collected and deposited at FRLH, Bengaluru for reference.

Dimensions: For all the species, 50 samples were studied and their size was measured by micrometer. The size of pollen grains were measured in the optical section of meridonial view under the oil immersion and the mean and standard deviation of

acetolysed grains were calculated. The measurement of objective (100 x 10 magnification the pollen grains and exine does not include the sculptural elements such as clavae, verrucae etc. The maximum thickness of the exine was measured. All the dimensions were expressed in micrometers. LO analysis was carried out to describe the pollen grains. The pollen morphological terminology followed standard glossaries¹⁶⁻¹⁷.

Results and Discussion

Pollen Characteristics of selected species: Light microscopic investigations of the pollen grains of five selected species revealed the presence of crotonoid pollen type (Plate 1). Table 1 summarizes the detailed pollen morphological features of the investigated taxa. Representative pollen grains are illustrated in Plate 1.

Table 1: Morphological characters of selected species of Jatropha from India

S.	Species with	Symmetry	Shape	Aperture	Sculpture	Diameter
No.	Herbarium No.					(µm)
1	J. glandulifera FRLH 120012	Radial	Spheroidal	Omniaperturate	Poly-hexagonal lax crotonoid pattern of round shape clavae (Plate 1 – Fig. 3)	82.6
2	<i>J. gossypifolia</i> FRLH 120009	Radial	Spheroidal	Omniaperturate	Triangular Clavae (Plate 1 – Fig. 5)	73.7
3	<i>J. gossypifolia</i> variant FRLH 120010	Radial	Spheroidal	Omniaperturate	Triangular Clavae (Plate 1 – Fig. 8)	73.8
4	J. integerrima FRLH 120011	Radial	Spheroidal	Omniaperturate	Clavae round and striated (Plate 1 – Fig. 12)	59.2
5	<i>J. multifida</i> FRLH 120007,	Radial	Spheroidal	Omniaperturate	Psilate clavae of triangular to round (Plate 1 – Fig. 14-15)	81.9
6	J. tanjorensis FRLH 120006	Radial	Spheroidal	Omniaperturate	Heavily sculptured polymorphic round clavae with various transverse patterns of striae (Plate 1 – Fig. 18)	94.6

In the present study, the size of the pollen grains was ranged from 59.2 μ m to 94.6 μ m in diameter for all the 5 selected species of *Jatropha* from India. The pollen grain size observed under light microscope were 94.6 μ m in *J. tanjorensis*, 81.9 μ m in *J. multifida*, 73.7 μ m in *J. gossypiifolia*, 82.6 μ m in *J. glandulifera*, and 59.2 μ m in *J. integerrima*. There is panporate type of pollen in all 5 species of the genus *Jatropha*and the pollen grains are similar with radial symmetry, spheroidal shape and omniaperturate type and showed variations

in sculpture. Fig. 1 shows the single cluster analysis dendrogram of the Jatropha species¹⁸, based on the pollen diameter. The figure reveals a strong relationship among the members of the section Peltatae (J. Jatropha section *multifida*) with (J. glandulifera, J. gossypifolia, J. gossypifolia variant and J. tanjorensis) and section Polymorphae (J. integerrima) and in their pollen size. Though, J. gossypifolia variant shows different leaf colouration, pollen morphological characters show no variation with J. gossypifolia. The single linkage

dendrogram shows close relationship between *J. multifida* and *J. glandulifera* but both are placed under different sections¹⁹. However, *J. glandulifera*, *J. gossypifolia*, *J. gossypifolia* variant and *J. tanjorensis* belong to section Jatropha and aligned with the previous studies based on their vegetative morphology and epidermal and petiole anatomy^{1, 20-21}.

Plate 1. Pollen morphology of species of *Jatropha*; 1 – Floral twig of *J. glandulifera*; 2-3 – Pollen of *J. glandulifera*; 4 – Floral twig of *J. gossypifolia*; 5-6 – Pollen of *J. gossypifolia*; 7 – Floral twig of *J. gossypifolia* variant; 8-9 – Pollen of *J. gossypifolia* variant; 10 – Floral twig of *J. integerrima*; 11-12 – Pollen of *J. integerrima*; 13 – Floral twig of *J. multifida*; 14-15 – Pollen of *J. multifida*; 16 – Floral twig of *J. tanjorensis*; 17-18 – Pollen of *J. tanjorensis*.

Section Polymorphae (*J. integerrima*) is clearly forming a different clade which aligning with the synoptic classification of

Dehgan and Webster¹ but oppose wood anatomical characters²² and quantitative phytochemical analysis²³.

Fig. 1. Dendrogram of quantitative pollen morphology (pollen diameter) of five species of *Jatropha*.

Legend: Jgv - Jatropha gossypifolia variant; Jg - J. gossypifolia; Ji - J. integerrima; Jm - J. multifida; Jgl - J. glandulifera; Jt - J. tanjorensis.

research is helpful Pollen to understand the systematic and evolutionary relationships of various groups of flowering plants²⁴. Pollen morphological characters of the studied members of genus Jatropha has shown marked consistency and uniformity not only in wall features but also in the shape and size of the pollen grains. The intrageneric pollen morphological characters of the genus include: pollen is \pm spheroidal, outline circular, radially symmetrical, inaperturate (omniaperturate²⁵⁻²⁶), heavily sculptured with clavate or pilate processes aligned reticulately to form crotonoid pattern⁷, pattern lax, heads \pm rounded, large lumina, with groups of 3-6 much smaller free clavae or pila and hexagonally arranged exinous knobs²⁷⁻²⁸. Ectexine is much thicker than endexine²⁹.

Conclusion

In the present study, pollen morphology of 5 *Jatropha* species such as *J. glandulifera, J.*

gossypifolia, J. integerrima, J. multifida and J. tanjorensis of family Euphorbiaceae from India were studied using Light Microscope (LM). The pollen grains of Jatropha showed stenopalynous condition with typically crotonoid, uniformly spheroidal, inaperturate/omniaperturate and hexagonally arranged exinous knobs.

Acknowledgements

The authors are thankful to Sri Darshan Shankar, Vice Chancellor, TDU; Prof. Balakrishna Pisupathi former Vice Chancellor of TDU; Prof. D. Narasimhan, for constant support, facility and encouragement. Sincere thanks are also to Dabur Foundation for financial support.

References

1. Dehgan B and Webster GL 1979, Morphology and infrageneric relationships of the genus *Jatropha* (Euphorbiaceae). University of California Publications in Botany **74** 73 p. 33 pl.

- 2. APG IV Angiosperm Phylogeny Group 2016, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Bot. J. Linn. Soc.* **181** (1) 1-20.
- 3. Heller J 1996, Physic nut *Jatropha curcas* L. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben / International Plant Genetic Resources Institute, Rome.
- Mabberley DJ 2017, Mabberley's Plant-book: A Portable Dictionary of Plants, their Classification and Uses. Cambridge University Press, Cambridge.
- Ratha Krishnan P and Paramathma M 2009, Potentials and *Jatropha* species wealth of India. *Curr. Sci.* 97 (7) 1000-1004.
- 6. McVaugh R 1944, The genus *Cnidoscolus:* generic limits and intergeneric groups. *Bull. Torrey Bot. Club* **71** 457-474.
- Erdtman G 1952, Pollen morphology and plant taxonomy. Angiosperms. Chronica Botanica. Almquist and Wiksell. Stockholm.
- Moore PD, Webb JA and Collinson ME 1991, Pollen Analysis, 2nd ed. Blackwell Scientific Publications, Oxford, U.K.
- 9. Nowicke JW and Skvarla JJ 1979, Pollen morphology: The potential influence in higher order systematics. *Ann. Mo. Bot. Gard.* **66** 633-700.
- 10. Stuessy TF 1990, Plant Taxonomy. Columbia University Press, New York.
- 11. Oswald WW, Doughty ED, Néeman G, Néeman R and Ellison AM 2011,

Pollen morphology and its relationship to taxonomy of the genus *Sarracenia* (Sarraceniaceae). *Rhodora* **113** (955) 235-251.

- Ferguson IK 1985, The role of Pollen Morphology in Plant Systematics. An. Asoc. Palinol. Leng. Esp. 2 5-18.
- Panajiotidis S, Athanasiadis N, Symeonidis L and Karataglis S 2000, Pollen morphology in relation to the taxonomy and phylogeny of some native Greek *Aegilops* species, *Grana* 39 (2-3) 126-132.
- Zafar M, Khan MA, Ahmad M and Sultana S 2006, Palynological and taxonomic studies of some weeds from flora of Rawalpindi. *Pak J. Weed Sci. Res.* 12 (1-2) 99-109.
- 15. Erdtman G1960, The acetolysis method. *Svensk Bot. Tidskr.* **54** 561-564.
- Punt W, Hoen PP, Blackmore S, Nilsson S and Le Thomas A 2007, Glossary of pollen and spore terminology. *Rev. Palaeobot. Palynol.* 143 1-81.
- 17. Hesse M, Halbritter H, Weber M, Buchner R, Frosch-Radivo A and Ulrich S 2007, Illustrated hand book on pollen morphology. Springer Vienna, 259 pp.
- Wessa P 2017, Free Statistics Software, Office for Research Development and Education, version 1.2.1, URL https://www.wessa.net/
- Bahadur B, Murthy GVS and Sujatha M 2013, Pollen of *Jatropha* L. Taxonomic and Phylogenetic Considerations. In: Bahadur B, Sujatha M and Carels N (Eds.), Jatropha, Challenges for a New Energy Crop: Volume 2: Genetic Improvement and Biotechnology (pp. 45-74). New York: Springer Science + Business Media.

- Dehgan B 1980, Application of epidermal morphology to taxonomic delimitation in the genus *Jatropha* L. (Euphorbiaceae). *Bot. J. Linn. Soc.* 80 257-278.
- 21. Dehgan B 1982, Comparative anatomy of the petiole and infrageneric relationship in *Jatropha* (Euphorbiaceae). *Amer. J. Bot.* **69** (8) 1283-1295.
- Oladipo OT and Illoh HC 2012, Comparative wood anatomy of some members of the genus *Jatropha* (Euphorbiaceae) found in Nigeria. *Phytol. Balcan.* 18 141-147.
- 23. Kolawole OS, Abdulrahaman AA and Oladele FA 2014, A numerical approach to the taxonomy of the genus *Jatropha* Linn. using quantitative phytochemical constitutents. *Eur. J. Exp. Biol.* **4** (6) 71-76.
- 24. Stephen A 2014, Pollen A microscopic wonder of plant kingdom. Int. J. Adv. Res. Biol. Sci. 1

(9) 45-62.

- Thanikaimoni G 1978, Pollen morphological terms: proposed definitions 1. Proc. IV int. Palynol. Conf., Lucknow 1 228-239.
- Thanikaimoni G, Caratini C, Nilsson S and Grafstrome E 1984, Omniaperturate Euphorbiaceae pollen with striate spines. *Bull. Jard. Bot. Nat. Belg.* 54 105-125
- Punt W 1962, Pollen morphology of the Euphorbiaceae with special reference to taxonomy. *Wentia* 7 1-116.
- Lynch SP and Webster GL 1976, A new technique of preparing pollen for scanning electron microscopy. *Grana* 15 127-136.
- Bahadur B, Ramanujam CGK, Murthy GVS, Goverdhan S and Kalpana TP 2000, A comparative analysis of LM and SEM studies of *Jatropha* L. (Euphorbiaceae) pollen. Geophytol. 28 (1-2) 67-75.

6